opencv图像形态学(边缘检测算法实例)

2024-09-02 23:20

本文主要是介绍opencv图像形态学(边缘检测算法实例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。在OpenCV中,图像形态学操作通过一系列的数学运算来实现,如腐蚀、膨胀、开运算、闭运算等。这些操作在图像处理、计算机视觉和模式识别等领域有着广泛的应用。

一、图像边缘检测

边缘检测:是图形图像处理、计算机视觉和机器视觉中的一个基本工具,通常用于特征提取和特征检测,旨在检测一张数字图像中有明显变化的边缘或者不连续的区域

1.边缘检测原理

边缘检测的基本原理是基于图像中局部区域与周围区域之间的灰度变化。当图像中存在灰度变化时,这种变化通常被视为边缘。在实际应用中,梯度可以通过不同的算法来计算,如Sobel算子、Prewitt算子等。这些算法通过应用特定的卷积核(或模板)到图像上,来计算每个像素点的梯度。

边缘检测的主要步骤

  1. 滤波:由于边缘检测算法主要基于图像强度的一阶和二阶导数,但这些导数对噪声非常敏感,因此滤波是边缘检测前的必要步骤。常用的滤波器是高斯滤波器,它通过离散化的高斯函数产生一组归一化的高斯核,然后基于这些高斯核对图像灰度矩阵的每一点进行加权求和,从而实现图像的平滑处理。
  2. 增强:增强算法的目的是将图像中灰度有显著变化的点(即潜在的边缘点)凸显出来。一般通过计算梯度幅值来完成。梯度是一个向量,表示图像中亮度变化的方向和速率。梯度的幅值反映了亮度变化的强度,因此可以通过计算每个像素点的梯度幅值来增强边缘信息。
  3. 检测:在增强后的图像中,虽然边缘信息得到了凸显,但并非所有梯度幅值较大的点都是真正的边缘点。因此,需要通过阈值化来检测边缘点。即设定一个或多个阈值,将梯度幅值大于阈值的点视为边缘点。
  4. 定位与连接:在检测到边缘点后,需要进一步确定边缘的精确位置,并将检测到的边缘点连接成完整的边缘轮廓。这通常涉及到对边缘点的进一步处理和分析,如亚像素边缘定位、霍夫变换、轮廓跟踪等。

常见的边缘检测算法

  1. Sobel算子:Sobel算子是基于一阶导数的边缘检测算子,它利用像素上下左右邻域的灰度加权算法,根据在边缘点处达到极值这一原理进行边缘检测。Sobel算子有两个,一个是检测水平边缘的,另一个是检测垂直边缘的。
  2. Laplacian算子:Laplacian算子是基于二阶导数的边缘检测算子,它对噪声比较敏感,但能够检测到更细致的边缘。Laplacian算子可以检测两个方向上的边,但通常需要先对图像进行平滑处理以减少噪声的影响。
  3. Canny边缘检测:Canny边缘检测是一种多级边缘检测算法,它结合了高斯滤波、梯度计算、非极大值抑制和双阈值处理等多个步骤,能够以较低的错误率检测边缘,并且检测到的边缘精确定位在真实边缘的中心。Canny边缘检测算法是目前应用最广泛的边缘检测算法之一。

算法实现:

1.Sobel算子:
import cv2  # 读取图片
monkey = cv2.imread('monkey.jpg', cv2.IMREAD_GRAYSCALE)  # 使用Sobel算子检测x方向的边缘,结果以64位浮点数存储  
monkey_x_64 = cv2.Sobel(monkey, cv2.CV_64F, dx=1, dy=0)  # 将64位浮点数结果转换为8位无符号整数,便于显示  
monkey_x_full = cv2.convertScaleAbs(monkey_x_64)  # 使用Sobel算子检测y方向的边缘,结果以64位浮点数存储  
monkey_y_64 = cv2.Sobel(monkey, cv2.CV_64F, dx=0, dy=1)  # 将64位浮点数结果转换为8位无符号整数,便于显示  
monkey_y_full = cv2.convertScaleAbs(monkey_y_64)  # 将x和y方向的边缘图像加权合并  
monkey_xy_full = cv2.addWeighted(monkey_x_full, 0.5, monkey_y_full, 0.5, 0)  # 这里我调整了权重为0.5和0.5,您可以根据需要调整  # 显示合并后的边缘图像  
cv2.imshow("monkey_xy", monkey_xy_full)  # 等待按键操作  
cv2.waitKey(0)  # 关闭所有OpenCV窗口  
cv2.destroyAllWindows()

前后对比

2.Canny边缘检测
import cv2  # 读取图片,注意文件名更正为 monkey.jpg  
monkey = cv2.imread('monkey.jpg', cv2.IMREAD_GRAYSCALE)  # 显示原始灰度图片  
cv2.imshow('Original Monkey', monkey)  
cv2.waitKey(0)  # 使用Canny边缘检测算法  
monkey_canny = cv2.Canny(monkey, 50, 100)  # 显示Canny边缘检测结果,注意窗口命名以避免混淆  
cv2.imshow('Canny Edges', monkey_canny)  
cv2.waitKey(0)  # 关闭所有OpenCV窗口  
cv2.destroyAllWindows()

前后对比

3.Laplacian算子

import cv2  # 读取图片,注意文件名更正为 monkey.jpg  
monkey = cv2.imread('monkey.jpg', cv2.IMREAD_GRAYSCALE)  # 应用Laplacian算子检测边缘  
monkey_lap = cv2.Laplacian(monkey, cv2.CV_64F)  
monkey_lap_full = cv2.convertScaleAbs(monkey_lap)  # 显示Laplacian边缘检测结果  
cv2.imshow('Laplacian Edges', monkey_lap_full)  
cv2.waitKey(0) 

除了上述算法外,还有Prewitt算子、Roberts算子、Scharr算子等多种边缘检测算法可供选择。这些算法各有优缺点,在实际应用中需要根据具体需求和图像特点选择合适的算法。

这篇关于opencv图像形态学(边缘检测算法实例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131364

相关文章

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案

《Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案》:本文主要介绍Vue3组件中getCurrentInstance()获取App实例,但是返回nu... 目录vue3组件中getCurrentInstajavascriptnce()获取App实例,但是返回n

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

springboot security验证码的登录实例

《springbootsecurity验证码的登录实例》:本文主要介绍springbootsecurity验证码的登录实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录前言代码示例引入依赖定义验证码生成器定义获取验证码及认证接口测试获取验证码登录总结前言在spring