通义说【线性代数】什么是线性

2024-09-02 11:20
文章标签 线性 线性代数 通义

本文主要是介绍通义说【线性代数】什么是线性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

线性关系是一种简单的数学关系,其中因变量(dependent variable)相对于自变量(independent variable)的变化率是常数,这意味着随着自变量的增加,因变量按照固定的比例增加或减少。这种关系可以用直线来表示。

线性函数具有以下性质:

  1. 叠加原理:两个线性函数的和仍然是线性的。
  2. 齐次性:线性函数满足齐次性原则,即如果一个函数是线性的,那么这个函数的输出应当与输入成比例。
  3. 无交互效应:线性关系意味着一个输入变量的变化不会影响另一个输入变量对输出的影响。

在更广泛的数学背景下,线性还有如下的含义:

  • 线性方程:形如 (ax + b = 0) 的方程称为线性方程,其中 (a) 和 (b) 是常数,(x) 是变量。
  • 线性方程组:由多个线性方程组成的集合,这些方程共同求解未知数。
  • 线性变换:这是线性代数中的一个重要概念,指的是将一个向量空间中的向量映射到另一个向量空间中的向量,同时保持向量加法和数量乘法的运算性质不变。
  • 线性空间/向量空间:一个向量集合,其中任意两个向量的线性组合也在该集合中,并且集合中的每个向量都可以被同一数域中的标量所乘。
  • 线性独立:一组向量如果没有任何一个向量可以表示为其余向量的线性组合,则称这组向量是线性独立的。

线性概念在工程学、物理学、经济学等众多学科中都有广泛的应用,因为它们能够简化复杂系统的行为建模,使得问题更容易分析和解决。例如,在电路理论中,线性元件(如电阻、电容、电感)组成的电路遵循线性原则;在力学中,小角度近似下摆的运动可以被认为是线性的;在经济模型中,线性模型用于简化需求和供给之间的关系等。

这篇关于通义说【线性代数】什么是线性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129809

相关文章

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成

带头结点的线性链表的基本操作

持续了好久,终于有了这篇博客,链表的操作需要借助图像模型进行反复学习,这里尽可能的整理并记录下自己的思考,以备后面复习,和大家分享。需要说明的是,我们从实际应用角度出发重新定义了线性表。 一. 定义 从上一篇文章可以看到,由于链表在空间的合理利用上和插入、删除时不需要移动等优点,因此在很多场合下,它是线性表的首选存储结构。然而,它也存在某些实现的缺点,如求线性表的长度时不如顺序存储结构的

python科学计算:NumPy 线性代数与矩阵操作

1 NumPy 中的矩阵与数组 在 NumPy 中,矩阵实际上是一种特殊的二维数组,因此几乎所有数组的操作都可以应用到矩阵上。不过,矩阵运算与一般的数组运算存在一定的区别,尤其是在点积、乘法等操作中。 1.1 创建矩阵 矩阵可以通过 NumPy 的 array() 函数创建。矩阵的形状可以通过 shape 属性来访问。 import numpy as np# 创建一个 2x3 矩阵mat

浙大数据结构:02-线性结构4 Pop Sequence

这道题我们采用数组来模拟堆栈和队列。 简单说一下大致思路,我们用栈来存1234.....,队列来存输入的一组数据,栈与队列进行匹配,相同就pop 机翻 1、条件准备 stk是栈,que是队列。 tt指向的是栈中下标,front指向队头,rear指向队尾。 初始化栈顶为0,队头为0,队尾为-1 #include<iostream>using namespace std;#defi

深度学习与大模型第3课:线性回归模型的构建与训练

文章目录 使用Python实现线性回归:从基础到scikit-learn1. 环境准备2. 数据准备和可视化3. 使用numpy实现线性回归4. 使用模型进行预测5. 可视化预测结果6. 使用scikit-learn实现线性回归7. 梯度下降法8. 随机梯度下降和小批量梯度下降9. 比较不同的梯度下降方法总结 使用Python实现线性回归:从基础到scikit-learn 线性