深度学习-神经网络:AWD-LSTM

2024-09-02 03:32

本文主要是介绍深度学习-神经网络:AWD-LSTM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

语言模型可以说是NLP中最基本的任务,无论是词向量,预训练模型,文本生成等任务中都带有语言模型的影子。

语言模型本质上是对一个自然世界中存在的句子建模,描述一个句子发生的概率,因此语言模型也是一个自回归的任务。

语言模型是一个上下文强依赖的任务,不仅需要捕获长距离的信息,还需要学到词之间的位置关系,从目前的技术来看,RNN系的模型在语言模型任务上的表现要优于transformer,主要原因还是因为Transformer在学习词位置关系时的能力弱于RNN,毕竟RNN是严格的从前到后循环依赖的。

一、AWD-LSTM简介

RNN在语言模型任务中的表现是非常优秀的,而且RNN的结构和语言模型的任务特性也很好的切合。

但RNN的循环连接容易过拟合。

本片论文就是围绕这一点展开的研究,提出了很多中解决RNN过拟合的技术,这一类技术不仅可以用在语言模型中,也可以用在其他RNN建模的任务中。

LSTM作为RNN系列中最优秀的代表变体,论文就是在不改变LSTM的原有结构上,引入各种正则化技术,提升模型的泛化能力,改善语言模型的性能。

二、正则化方法优化LSTM

1、weighte-dropped LSTM

2、Variable length backpropagation sequences

3、Variational dropout

4、Embedding dropout

5、Weight tying

6、Independent embedding size and hidden size

7、Activation Regularization (AR) and Temporal Activation Regularization (TAR)

三、NT-ASGD

研究发现,对于特定的语言建模任务,SGD的效果要优于带动量的,或者自适应学习速率的优化算法,如动量法,Adagrad,RMSProp,Adam等优化算法。作者在这里没有直接使用SGD,而是调研了ASGD(averaged SGD),发现ASGD的有着更好的效果。ASGD中有这么一项,即对过去的权重求均值,ASGD中用过去的参数的均值替换上一步的参数:




参考资料:
语言模型系列(一)——AWD-LSTM
AWD-LSTM为什么这么棒?
语言建模的王者:AWD-LSTM指南

这篇关于深度学习-神经网络:AWD-LSTM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128865

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}