NLP-分类模型-2014-文本分类:TextCNN【使用 “CNN”+ 预训练的 “词向量” --> 处理 “句子级别” 的文本分类】

本文主要是介绍NLP-分类模型-2014-文本分类:TextCNN【使用 “CNN”+ 预训练的 “词向量” --> 处理 “句子级别” 的文本分类】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《TextCNN 原始论文:Convolutional Neural Networks for Sentence Classification》

一、概述

1、TextCNN 是什么?

我们之前提前CNN时,通常会认为是属于CV领域,用于计算机视觉方向的工作,但是在2014年,Yoon Kim针对CNN的输入层做了一些变形,提出了文本分类模型textCNN。与传统图像的CNN网络相比, textCNN 在网络结构上没有任何变化(甚至更加简单了), 从图一可以看出textCNN 其实只有一层卷积,一层max-pooling, 最后将输出外接softmax 来n分类。

在这里插入图片描述

在这里插入图片描述
与图像当中CNN的网络相比,textCNN 最大的不同便是在输入数据的不同:

  • 图像是二维数据, 图像的卷积核是从左到右, 从上到下进行滑动来进行特征抽取。
  • 自然语言是一维数据, 虽然经过word-embedding 生成了二维向量,但是对词向量做从左到右滑动来进行卷积没有意义. 比如 “今天” 对应的向量[0, 0, 0, 0, 1], 按窗口大小为 1 × 2 1× 2 1×2 从左到右滑动得到[0,0], [0,0], [0,0], [0, 1]这四个向量, 对应的都是"今天"这个词汇, 这种滑动没有帮助。

TextCNN的成功, 不是网络结构的成功, 而是通过引入已经训练好的词向量来在多个数据集上达到了超越benchmark 的表现,进一步证明了构造更好的embedding, 是提升NLP各项任务的关键

2、TextCNN 的优势

  1. TextCNN最大优势网络结构简单 ,在模型网络结构如此简单的情况下,通过引入已经训练好的词向量依旧有很不错的效果,在多项数据数据集上超越benchmark。

  2. 网络结构简单导致参数数目少, 计算量少, 训练速度快,在单机单卡的v100机器上,训练165万数据, 迭代26万步,半个小时左右可以收敛。

二、TextCNN 模型

1、分词&构建词向量

如下图所示, textCNN 首先将 “今天天气很好,出来玩” 分词成"今天/天气/很好/,/出来/玩, 通过word2vec或者GLOV 等embedding 方式将每个词成映射成一个5维(维数可以自己指定)词向量, 如 “今天” -> [0,0,0,0,1], “天气” ->[0,0,0,1,0], “很好” ->[0,0,1,0,0]等等。

在这里插入图片描述
这样做的好处主要是将自然语言数值化,方便后续的处理。

  • 从这里也可以看出不同的映射方式对最后的结果是会产生巨大的影响;
  • NLP 当中目前最火热的研究方向便是如何将自然语言映射成更好的词向量。
  • 我们构建完词向量后,将所有的词向量拼接起来构成一个6*5的二维矩阵,作为最初的输入。

2、Convolution 卷积

在这里插入图片描述
卷积是一种数学算子。我们用一个简单的例子来说明一下:

  • step.1 将 “今天”/“天气”/“很好”/“,” 对应的 4 × 5 4×5 4×5 矩阵 与卷积核做一个point wise 的乘法然后求和, 便是卷积操作:

F e a t u r e M a p [ 0 ] = 0 × 1 + 0 × 0 + 0 × 1 + 0 × 0 + 1 × 0 ( 第 一 行 ) + 0 × 0 + 0 × 0 + 0 × 0 + 1 × 0 + 0 × 0 ( 第 二 行 ) + 0 × 1 + 0 × 0 + 1 × 1 + 0 × 0 + 0 × 0 ( 第 三 行 ) + 0 × 1 + 1 × 0 + 0 × 1 + 0 × 0 + 0 × 0 ( 第 四 行 ) = 1 \begin{aligned} FeatureMap[0] &= 0×1 + 0×0 + 0×1 + 0×0 + 1×0 \quad (第一行)\\ &+ 0×0 + 0×0 + 0×0 + 1×0 + 0×0 \quad (第二行)\\ &+ 0×1 + 0×0 + 1×1 + 0×0 + 0×0 \quad(第三行)\\ &+ 0×1 + 1×0 + 0×1 + 0×0 + 0×0 \quad (第四行)\\ &= 1 \end{aligned} FeatureMap[0]=0×1+0×0+0×1+0×0+1×0()+0×0+0×0+0×0+1×0+0×0()+0×1+0×0+1×1+0×0+0×0()+0×1+1×0+0×1+0×0+0×0()=1

  • step.2 将窗口向下滑动一格(滑动的距离可以自己设置),“天气”/“很好”/“,”/“出来” 对应的4*5 矩阵 与卷积核(权值不变) 继续做point wise 乘法后求和

F e a t u r e M a p [ 1 ] = 0 × 1 + 0 × 0 + 0 × 1 + 1 × 0 + 0 × 0 ( 第 一 行 ) + 0 × 0 + 0 × 0 + 1 × 0 + 0 × 0 + 0 × 0 ( 第 二 行 ) + 0 × 1 + 1 × 0 + 0 × 1 + 0 × 0 + 0 × 0 ( 第 三 行 ) + 1 × 1 + 0 × 0 + 0 × 1 + 0 × 0 + 0 × 0 ( 第 四 行 ) = 1 \begin{aligned} FeatureMap[1] &= 0×1 + 0×0 + 0×1 + 1×0 + 0×0 \quad (第一行)\\ &+ 0×0 + 0×0 + 1×0 + 0×0 + 0×0 \quad (第二行)\\ &+ 0×1 + 1×0 + 0×1 + 0×0 + 0×0 \quad(第三行)\\ &+ 1×1 + 0×0 + 0×1 + 0×0 + 0×0 \quad (第四行)\\ &= 1 \end{aligned} FeatureMap[1]=0×1+0×0+0×1+1×0+

这篇关于NLP-分类模型-2014-文本分类:TextCNN【使用 “CNN”+ 预训练的 “词向量” --> 处理 “句子级别” 的文本分类】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128850

相关文章

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

如何使用Nginx配置将80端口重定向到443端口

《如何使用Nginx配置将80端口重定向到443端口》这篇文章主要为大家详细介绍了如何将Nginx配置为将HTTP(80端口)请求重定向到HTTPS(443端口),文中的示例代码讲解详细,有需要的小伙... 目录1. 创建或编辑Nginx配置文件2. 配置HTTP重定向到HTTPS3. 配置HTTPS服务器