多目标应用:基于NSGA3的移动机器人路径规划研究(提供MATLAB代码)

本文主要是介绍多目标应用:基于NSGA3的移动机器人路径规划研究(提供MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、机器人路径规划介绍

移动机器人(Mobile robot,MR)的路径规划是 移动机器人研究的重要分支之,是对其进行控制的基础。根据环境信息的已知程度不同,路径规划分为基于环境信息已知的全局路径规划和基于环境信息未知或局部已知的局部路径规划。随着科技的快速发展以及机器人的大量应用,人们对机器人的要求也越来越高,尤其表现在对机器人的智能化方面的要求,而机器人自主路径规划是实现机器人智能化的重要步骤,路径规划是指规划机器人从起点位置出发,无碰撞、安全到达指定目标位置的最优路径。目前,常用的移动机器人全局路径规划方法很多,如栅格法和人工势场法。对于栅格法,当空间增大时,所需存储空间剧增,决策速度下降;而人工势场法容易产生局部最优解问题和死锁现象。随着智能控制技术的发展,出现了如遗传算法算法、粒子群优化算法、麻雀搜索算法、灰狼优化算法、鲸鱼优化算法等。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人, 2005, 27(2):5.DOI:10.3321/j.issn:1002-0446.2005.02.008.

[3]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

二、栅格地图环境搭建

首先建立移动机器人工作环境,设移动机器人的工作空间为二维空间(记为RS),工作环境中的障碍物即为机床。在机器人运动过程中,障碍物为静止且大小不发生变化。按栅格法划分RS,移动机器人在栅格间行走。无障碍物的栅格为可行栅格,有障碍物的栅格为不可行栅格。栅格集包含所有栅格。栅格标识有:直角坐标法和序号法。本文采用序号标识法。

在移动机器人工作空间下按从左到右,从上到下的顺序,依次标记为序号1,2,3,···,n,每一个序号代表一个栅格。为了避免移动机器人与障碍物发生碰撞,可以将障碍物膨胀,障碍物在占原有栅格的同时,再占多个栅格,按 个栅格算。这种划分方法简单实用,能够满足环境模型与真实情况相符。从而使移动机器人在路径规划时畅通无阻。令S={1,2,3,···,N}为栅格序号集。根据上述对应关系,可知g(0,0)的序号为1,g(1,0)序号为2,直至g(X,Y)的序号为n。规划起始位置、目标位置均为任意且都属于S(但不在同一栅格内)。

在实际工作环境中,移动机器人工作环境是复杂多变的,且为三维空间。为了便于研究,本文对环境进行简化建模。栅格法是一种常用的环境表示方法,因其简单方便(二维环境),环境建模的复杂性小,因而本文环境建模采用栅格法。在栅格地图中,工作环境被划分为很多栅格,其中包括有障碍物和无障碍的栅格,在仿真程序中用0表示此栅格无障碍物,机器人可以通过此栅格,用1表示栅格有障碍物,机器人无法通过,需选择其他栅格。栅格的尺寸大小可根据工作环境中的障碍物尺寸以及安全距离进行设置。为了实现程序仿真,需要对栅格进行标识,如下图所示,以20x20的栅格环境为例来说明。

如上图所示,白色栅格表示无障碍物的栅格,黑色栅格则表示有障碍物的栅格,在地图中对每个栅格编号,不同序号的栅格在坐标系中的坐标可用下式来表示:

x=mod(Ni/N)-0.5

y=N-ceil(Ni/N)+0.5

其中,mod为取余运算,ceil表示向后取整,Ni是对应栅格的标号,N表示每 列的栅格数量,取栅格中心位置作为栅格在坐标系中的坐标。这样机器人全局路径规划的问题就转变成了利用算法在栅格地图上寻找由起始点到目标点的有序的栅格子集,这些栅格子集的中心连线便是算法寻找的路径。

参考文献:

[1]史恩秀,陈敏敏,李俊,等.基于蚁群算法的移动机器人全局路径规划方法研究[J].农业机械学报, 2014, 45(6):5.DOI:CNKI:SUN:NYJX.0.2014-06-009.

[2]曹新亮,王智文,冯晶,等.基于改进蚁群算法的机器人全局路径规划研究[J].计算机工程与科学, 2020, 42(3):7.DOI:CNKI:SUN:JSJK.0.2020-03-027.

三、机器人路径规划多目标模型

3.1路径成本

当机器人从起点向目标点移动时,通常选择最短的一条路径。将一条路径上每 条线段的长度累加求和即可得到路径总长度。任何两点形成的线段都是根据欧氏距 离来计算的,其中,P = [P0, P1, …, Pi, Pi + 1, … Pn, Pn + 1]代表路径 P,S = P0代表起 点,T = Pn + 1代表目标点。路径长度目标计算方法如下式

其中,Pi =(xi, yi)和 Pi + 1 = (xi + 1, yi + 1)是路径中的两个连续点,d(Pi, Pi + 1)是 路径中的线段距离;Length(P)表示由所有线段相加得到的总路径长度;n 表示路 径中的点数量。

3.2平滑成本

路径平滑度表示路径的弯曲程度,换句话说,只有当路径是平滑的,机器人 在移动时才会使用较少的能量。为了衡量可行路径的平滑度,使用两个连续路段之 间的夹角 Ang [Pi, Pi + 1, Pi + 2]表示。路径平滑度的计算方法如下式

其中 Pi,Pi + 1和 Pi + 2是路径上的三个相邻节点。

3.3目标函数

移动机器人(Mobile robot,MR)的路径规划的目标函数f1f2分别是路径成本最小平滑成本最小

参考文献:

 [1]于振翱. 面向多目标优化的移动机器人路径规划方法研究[D]. 山东:聊城大学,2023. 

[2]杨嘉. 基于改进NSGA-Ⅱ算法的移动机器人路径规划研究[D]. 陕西:长安大学,2021.

四、NSGA3求解移动机器人路径规划

NSGA-III(非支配排序遗传算法第三版)是由Kalyanmoy Deb等人在2013年提出的一种多目标优化算法,旨在解决具有四个或更多目标的复杂优化问题。与传统的NSGA-II相比,NSGA-III在处理高维目标问题时能够更有效地保持种群的多样性和收敛性。
NSGA-III的核心思想是使用预定的参考方向来引导算法的搜索过程。这些参考方向是预先定义的,通常在算法初始化时提供。算法通过这些参考方向来评估和选择个体,从而在多目标空间中找到均匀分布的Pareto最优解。
参考文献:

[1] Deb K , Jain H .An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints[J].IEEE Transactions on Evolutionary Computation, 2014, 18(4):577-601.DOI:10.1109/TEVC.2013.2281535.

4.1部分代码

close all
clear
clc
dbstop if all error
addpath("./NSGA3/")
global G S E
MultiObj= fun_info();%获取无人机模型信息
params.maxgen=100;  % 最大迭代次数
params.Np=50;      % 种群大小
params.Nr=100;      %外部存档大小(不得小于种群大小)
[Xbest,Fbest] = NSGA3(params,MultiObj);
%% 获取算法得到的所有路径存于Result中
for i=1:size(Xbest,1)global_best = round(Xbest(i,:));route = [S(1) global_best E(1)];path=generateContinuousRoute(route,G);% path=shortenRoute(path);path=GenerateSmoothPath(path,G);Result(i).BestPosition= path;Result(i).BestFit=Fbest(i,:);
end%% 获取 路径成本最小 与 平滑成本最小
if size(Fbest,1)>1idx=min(Fbest);
elseidx=Fbest;
end
KK=find(Fbest(:,1)==idx(1));
IDX(1)=KK(1);
KK=find(Fbest(:,2)==idx(2));
IDX(2)=KK(1);%%  画图pareto前沿图
dbclear all
figure
plot(Fbest(:,1),Fbest(:,2),'r*');
xlabel('路径成本')
ylabel('平滑成本')
legend('NSGA3')

4.2部分结果

五、完整MATLAB代码

见下方联系方式

这篇关于多目标应用:基于NSGA3的移动机器人路径规划研究(提供MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127255

相关文章

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python