python 天气与股票的关系--第3部分,建立模型

2024-09-01 13:04

本文主要是介绍python 天气与股票的关系--第3部分,建立模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

起因(目的):

继续瞎折腾。

过程:

  1. 假设有下面这些规则: 天气中的温度,
  • 如果最高温度大于 36, 那么就是坏天气。
  • 如果最低温度小于 5, 那么也是坏天气。
  • 如果下雨, 下雪, 那么也是坏天气。
  • 其他情况为 好天气
import pandas as pddef calculate_comfort(row, initial_comfort=17):# confy = initial_comfortconfy = int(row['high'].replace('℃', '')) - int(row['low'].replace('℃', ''))  # 提取温度信息high_temp = int(row['high'].replace('℃', ''))low_temp = int(row['low'].replace('℃', ''))# 天气信息中的关键词weather_info = row['info']# 根据天气调整舒适度if '雨' in weather_info:confy -= 3if '雪' in weather_info:confy -= 5# 高温处理if high_temp >= 36:confy -= 0.1 * (high_temp - 35)# 低温处理if low_temp <= 5:confy -= 0.1 * (6 - low_temp)# 理想温度增加舒适度ideal_temp = 20if 18 <= high_temp <= 22:confy *= 1.8elif 16 <= high_temp <= 24:confy *= 1.3return confy
df['comfort_level'] = df.apply(calculate_comfort, axis=1)
  1. 此外, 开盘, 收盘,之间的差距, 作为一天的结果。 也是作为模型的 y!
# ret --> mean       0.171798
df["ret"]  = (df["收盘"] -  df["开盘"] ) *100  # 17 
  1. 画图查看
    在这里插入图片描述

如果只从数值的角度, 那么很难看出有什么关系!

  1. 换一种思路。 对比变换情况。
  • 今天与昨天的天气变化情况 A
  • 今天与昨天的股市变化情况 B
  • A 与 B 之间的关系!
# 创建二元变量表示今天的值是否大于昨天的值
df['comfort_change'] = (df['comfort_level'] > df['comfort_level'].shift(1)).astype(int)
df['ret_change'] = (df['ret'] > df['ret'].shift(1)).astype(int)# ret_change, 第二种思路, 根据正负值来判断!
df['ret_change2'] = (df['ret'] > 0).astype(int)  # 修改此行来适应新的规则# 打印结果查看
df[['date', 'comfort_level', 'ret', 'comfort_change', 'ret_change', "ret_change2"]].head()# 统计两个列中相等值的行数
equal_count = (df['comfort_change'] == df['ret_change']).sum()

输出 258, 而总共有484条数据,准确率是 258 / 484 = 0.533

结论 + todo

  1. 根据天气, 来猜测股市的涨跌, 猜对的概率为 53%
  2. 一个问题是, 由于节假日,休市, 所以日期是不连贯的。 数据中的昨天, 不一定是昨天(比如, 假设今天是周一, 那么“昨天”, 不是真正的昨天, 而是上个星期的周五。) 这中间差了几天, 天气也变化了。所以有问题!

走过路过,支持一下啊。

zfb

wx

这篇关于python 天气与股票的关系--第3部分,建立模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1127014

相关文章

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1