Python OpenCV -- Canny 边缘检测 (十一)

2024-09-01 05:38

本文主要是介绍Python OpenCV -- Canny 边缘检测 (十一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Canny 边缘检测

原理

  Canny 边缘检测算法 是 John F. Canny 于 1986年开发出来的一个多级边缘检测算法,也被很多人认为是边缘检测的 最优算法, 最优边缘检测的三个主要评价标准是:

  低错误率: 标识出尽可能多的实际边缘,同时尽可能的减少噪声产生的误报。
  高定位性: 标识出的边缘要与图像中的实际边缘尽可能接近。
  最小响应: 图像中的边缘只能标识一次。


步骤

 1. 消除噪声。 使用高斯平滑滤波器卷积降噪。 下面显示了一个 size = 5 的高斯内核示例:

                                                K = \dfrac{1}{159}\begin{bmatrix}          2 & 4 & 5 & 4 & 2 \\          4 & 9 & 12 & 9 & 4 \\          5 & 12 & 15 & 12 & 5 \\          4 & 9 & 12 & 9 & 4 \\          2 & 4 & 5 & 4 & 2                  \end{bmatrix}

 2.计算梯度幅值和方向。 此处,按照Sobel滤波器的步骤:

   a. 运用一对卷积阵列 (分别作用于 x 和 y 方向):

                                                            G_{x} = \begin{bmatrix}-1 & 0 & +1  \\-2 & 0 & +2  \\-1 & 0 & +1\end{bmatrix}G_{y} = \begin{bmatrix}-1 & -2 & -1  \\0 & 0 & 0  \\+1 & +2 & +1\end{bmatrix}

   b.使用下列公式计算梯度幅值和方向:

                                                              \begin{array}{l}G = \sqrt{ G_{x}^{2} + G_{y}^{2} } \\\theta = \arctan(\dfrac{ G_{y} }{ G_{x} })\end{array}

        梯度方向近似到四个可能角度之一(一般 0, 45, 90, 135)

 

  3. 非极大值 抑制。 这一步排除非边缘像素, 仅仅保留了一些细线条(候选边缘)。

  4.滞后阈值: 最后一步,Canny 使用了滞后阈值,滞后阈值需要两个阈值(高阈值和低阈值):

     a. 如果某一像素位置的幅值超过 高 阈值, 该像素被保留为边缘像素。
     b. 如果某一像素位置的幅值小于 低 阈值, 该像素被排除。
     c. 如果某一像素位置的幅值在两个阈值之间,该像素仅仅在连接到一个高于 高 阈值的像素时被保留。
     

    Canny 推荐的 高:低 阈值比在 2:1 到3:1之间。


使用

OpenCV Python  中 Canny 函数原型

edge = cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]]) 

edge  --  函数返回 一副二值图(黑白),其中包含检测出来的边缘

image --   需要处理的原图像,该图像必须为单通道的灰度图
threshold1  --  阈值1

threshold2  --  阈值2


  threshold2  是较大的阈值,用于检测图像中明显的边缘,但一般情况下检测的效果不会那么完美,边缘检测出来是断断续续的。所以这时候用较小的 threshold1  

(第一个阈值)用于将这些间断的边缘连接起来。


apertureSize  --  Sobel 算子的大小。

L2gradient   --  一个布尔值,如果为 True ,刚使用更精确的 L2 范数进行计算(即两个方向的倒数的平方和再开放), False 将使用L1 范数(直接将两个方向导数

的绝对值相加)。


示例1(静态检测)

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np img = cv2.imread("2.jpg", 0)  #Canny只能处理灰度图,所以将读取的图像转成灰度图img = cv2.GaussianBlur(img,(3,3),0) #高斯平滑处理原图像降噪 
canny = cv2.Canny(img, 50, 150)     #apertureSize默认为3cv2.imshow('Canny', canny)  
cv2.waitKey(0)  
cv2.destroyAllWindows()  

效果图:



示例2(动态检测)

#!/usr/bin/env python  
# encoding: utf-8  
import cv2  
import numpy as np def CannyThreshold(lowThreshold):  detected_edges = cv2.GaussianBlur(gray,(3,3),0)  detected_edges = cv2.Canny(detected_edges,lowThreshold,lowThreshold*ratio,apertureSize = kernel_size)  dst = cv2.bitwise_and(img,img,mask = detected_edges)  # just add some colours to edges from original image.  cv2.imshow('canny demo',dst)  lowThreshold = 0  
max_lowThreshold = 100  
ratio = 3  
kernel_size = 3  img = cv2.imread('2.jpg')  
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)  cv2.namedWindow('canny demo')  cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold)  CannyThreshold(0)  # initialization  
if cv2.waitKey(0) == 27:  cv2.destroyAllWindows()  







参考和转载:

 程序使用的是 sunny2038 的,最后那个链接就是他的博客

http://wiki.opencv.org.cn/index.php/Canny%E8%BE%B9%E7%BC%98%E6%A3%80%E6%B5%8B

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html

http://blog.csdn.net/sunny2038/article/details/9202641

这篇关于Python OpenCV -- Canny 边缘检测 (十一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1126091

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid