时空图卷积网络:用于交通流量预测的深度学习框架-1

本文主要是介绍时空图卷积网络:用于交通流量预测的深度学习框架-1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

准确的交通预测对于城市交通控制和引导至关重要。由于交通流的高度非线性和复杂性,传统方法无法满足中长期预测任务的需求,且往往忽略了空间和时间的依赖关系。本文提出一种新的深度学习框架——时空图卷积网络(STGCN)来解决交通领域的时间序列预测问题。本文没有应用常规的卷积和递归单元,而是在图上形式化问题,并构建具有完整卷积结构的模型,以较少的参数实现更快的训练速度。实验表明,所提出模型STGCN通过对多尺度交通网络进行建模有效地捕获了全面的时空相关性,并在各种真实世界的交通数据集上始终优于最先进的基线。

介绍

交通在每个人的日常生活中起着至关重要的作用。根据2015年的一项调查,美国司机每天花在开车上的时间平均约为48分钟在这种情况下,准确的实时交通状况预测对道路使用者、私营部门和政府都至关重要。广泛应用的交通服务,如流量控制、路线规划、导航等,也在很大程度上依赖于高质量的交通状态评价。多尺度交通预测是城市交通控制与诱导的前提和基础,也是智能交通系统(Intelligent Transportation System, ITS)的主要功能之一。

在交通研究中,通常选择交通流的基本变量,即速度、容量和密度作为监测当前交通状况和预测未来的指标。根据预测时间的长短,交通预测分为短期(5 ~ 30分钟)、中期和长期(30分钟以上)。大多数流行的统计方法(例如,线性回归)能够在短区间预测中表现良好。然而,由于交通流的不确定性和复杂性,这些方法对于相对长期的预测效果较差。

现有的中长期流量预测研究大致可分为动态建模和数据驱动两大类。动态建模使用数学工具(如微分方程)和物理知识通过计算模拟来制定交通问题[Vlahogianni, 2015]。为了达到稳态,模拟过程不仅需要复杂的系统编程,而且需要消耗巨大的计算能力。不切实际的假设和模型之间的简化也会降低预测精度。因此,随着交通数据采集和存储技术的快速发展,一大批研究人员开始将注意力转向数据驱动的方法。经典的统计模型和机器学习模型是数据驱动方法的两个主要代表。在时间序列分析中,自回归综合移动平均(ARIMA)及其变体是基于经典统计的最综合的方法之一[Ahmed and Cook, 1979;Williams和Hoel, 2003]。然而,这类模型受限于时间序列的平稳性假设,且未能考虑到时间序列的时空相关性。因此,这些方法对高度非线性的交通流具有有限的表征能力。近年来,经典的统计模型在交通预测任务上受到机器学习方法的挑战。这些模型可以实现更高的预测精度和更复杂的数据建模,如k近邻算法(KNN)、支持向量机(SVM)和神经网络(NN)。

深度学习方法已经被广泛成功地应用于各种交通任务中。相关工作取得了重大进展,例如深度信念网络(DBN) [Jia等人,2016;黄等人,2014],栈式自编码器(SAE) [Lv等人,2015;陈等,2016]。然而,这些Dense网络很难从输入中联合提取空间和时间特征。此外,在空间属性受限甚至完全缺失的情况下,这些网络的代表能力将受到严重阻碍。

为了充分利用空间特征,一些研究人员使用卷积神经网络(convolutional neural network, CNN)捕获交通网络之间的相邻关系,并在时间轴上使用循环神经网络(recurrent neural network, RNN)。Wu和Tan[2016]通过结合长短期记忆(LSTM)网络[Hochreiter和Schmidhuber, 1997]和一维CNN,提出了一种用于短期流量预测的特征级融合架构CLTFP。尽管CLTFP采用了一种直接的策略,但它仍然首次尝试对齐空间和时间规律。之后,Shi等人[2015]提出了卷积LSTM,这是一种嵌入卷积层的扩展全连接LSTM (FC-LSTM)。然而,常规的卷积操作限制了模型只能处理网格结构(例如图像、视频),而不是一般的领域。同时,用于序列学习的递归网络需要迭代训练,会逐步引入误差累积。此外,众所周知,基于RNN的网络(包括LSTM)很难训练,计算量很大。

为了克服这些问题,提出了多种策略来有效地建模交通流的时间动态和空间依赖关系。为了充分利用空间信息,本文将交通网络建模为一个整体图,而不是将其单独处理(如网格或分段)。为了解决递归网络固有的缺陷,在时间轴上采用了全卷积结构。提出了一种新的深度学习架构——时空图卷积网络,用于交通预测任务。该架构包括几个时空卷积块,它们是图卷积层[Defferrard等人,2016]和卷积序列学习层的组合,以对空间和时间依赖性进行建模。这是首次在交通研究中应用纯卷积结构同时从图结构时间序列中提取时空特征。在两个真实世界的交通数据集上评估了所提出的模型。实验表明,所提出框架在具有多个预设预测长度和网络规模的预测任务中优于现有基线。

预备知识

道路图上的交通预测与图卷积

交通预测是一个典型的时间序列预测问题,即在给定前M个交通观测值的情况下,预测未来H个时间步内最可能的交通测量值(如速度或交通流量)。

【这里介绍了道路图的预测方式及数据表示、图卷积,不进行赘述】

提出模型

网络结构

在本节中,我们详细介绍了所提出的时空图卷积网络(STGCN)架构。如图2所示,STGCN由多个时空卷积块组成,每个时空卷积块形成一个“三明治”结构,中间有两个门控序列卷积层和一个空间图卷积层。每个模块的详细描述如下。

图2:时空图卷积网络架构

 STGCN框架由两个时空卷积块(ST-Conv块)和一个全连接输出层组成。每个ST-Conv块中间包含两个时间门控卷积层和一个空间图卷积层。在每个块内部采用残差连接和瓶颈策略。输入vt−M+1,…,通过ST-Conv块对vt进行统一处理,以一致地探索空间和时间依赖关系。综合特征通过输出层集成以生成最终预测vˆ。

提取空间特征的图卷积网络

交通网络一般以图的形式组织。道路网络的数学表示是自然而合理的。然而,以往的研究忽略了交通网络的空间属性:将交通网络划分为多个区段或网格,忽略了网络的连通性和全局性。即使是网格上的二维卷积,由于数据建模的妥协,也只能粗略地捕获空间局部性。因此,在该模型中,直接在图结构数据上使用图卷积,以提取空间域中高度有意义的模式和特征。虽然通过等式(2)计算图卷积中的核Θ可能由于与图傅里叶基的乘法O(n2)而非常昂贵,但采用了两种近似策略来克服这个问题:切比雪夫多项式近似和一阶近似。

这篇关于时空图卷积网络:用于交通流量预测的深度学习框架-1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125674

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识