【大数据算法】时间亚线性算法之:时间亚线性判定算法概述。

2024-09-01 01:52

本文主要是介绍【大数据算法】时间亚线性算法之:时间亚线性判定算法概述。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时间亚线性判定算法概述

  • 1、引言
  • 2、空间亚线性算法
    • 2.1 定义
    • 2.2 实现方式
    • 2.3 应用场景
      • 2.3.1 大数据分析
      • 2.3.2 流数据处理
      • 2.3.3 近似计算
      • 2.3.4 稀疏数据操作
    • 2.4 代码示例
  • 3、总结

1、引言

小屌丝:鱼哥,最近看新闻没啊?
小鱼:我天天看新闻啊,
小屌丝:哎,我说的是爆炸性新闻
小鱼:有啥新闻这么让你爆炸啊?
小屌丝:美国战机被黎巴嫩击落了。
小鱼:哦,这条新闻,确实很炸裂啊。
小屌丝:那可不,我就给你看个照片
在这里插入图片描述

小鱼:你可真是"大可爱"。
小屌丝:我不可爱,谁可爱。
小鱼:嗯,嗯,没错,你是大可爱! ! !

在这里插入图片描述

小屌丝:鱼哥,你看,我都跟你说了这么炸裂的新闻,作为信息交换,你是不是可以给我讲一个爆炸性的知识啊
小鱼:我可没说跟你交换。
小屌丝:你确定???
小鱼:必须得,君子岂能为随便折腰~
小屌丝:那~ 我可就…
小鱼:… 好吧,我答应你的条件
小屌丝:鱼哥,都说有眼力见的人仕途一片坦途。
小鱼:你又想说什么。
小屌丝:嘿嘿,喝茶,咱喝茶。

在这里插入图片描述

2、空间亚线性算法

2.1 定义

时间亚线性判定算法是指那些其时间复杂度在 O ( l o g N ) O(logN) O(logN) 或更低(例如 O ( 1 ) O(1) O(1))的算法。
这种算法在处理大规模数据时表现优越,能够有效减少处理时间,提高效率。

这类算法对需快速判定某些条件的应用场景尤为重要,例如数据查找、模式匹配、实时系统等。

2.2 实现方式

时间亚线性判定算法通过以下几种方式实现:

  • 预处理和索引:通过预处理数据集,把结果以某种格式存储起来,从而在查询时能迅速定位。
  • 分治法:将问题分解成较小的子问题,然后分别处理,从而减少总的时间复杂度。
  • 哈希表:利用哈希表进行快速查找,减少查询时间。
  • 空间换时间:通过增加额外的存储空间来提高运算速度。

2.3 应用场景

间亚线性判定算法在多个领域有着广泛的应用,包括但不限于:

  • 大数据分析:在处理大规模数据集时,时间亚线性算法能够显著提高分析效率,尤其是在数据量远超可用内存或处理时间有限的情况下。
  • 流数据处理:对于连续到达的数据流,时间亚线性算法允许对数据流进行单遍扫描或有限次数扫描,适用于实时数据处理场景。
  • 近似计算:在某些情况下,精确解并不是必需的,或者精确解的计算成本过高。时间亚线性算法通过提供近似解来满足实际需求,同时降低计算复杂度。
  • 稀疏数据操作:在处理含有大量零元素的稀疏矩阵或稀疏图时,时间亚线性算法通过跳过零元素进行计算,显著提高处理效率。

在这里插入图片描述

2.3.1 大数据分析

  • 在大数据分析领域,时间亚线性判定算法的应用尤为突出。

  • 面对庞大的数据集,传统的线性时间算法往往因为计算复杂度过高而无法在有限的时间内完成分析任务。

  • 而时间亚线性算法则能够通过高效的抽样、数据压缩和近似计算等技术,在保持一定精确度的同时,显著降低计算复杂度,提高分析效率。

  • 这对于数据量远超可用内存或处理时间有限的情况尤为重要,使得大数据分析变得更加可行和高效。

2.3.2 流数据处理

  • 在流数据处理场景中,数据是连续到达的,且数据量可能非常大。

  • 传统的算法往往需要对数据进行多次扫描或存储大量中间结果,导致计算复杂度和存储需求都很高。

  • 而时间亚线性判定算法则允许对数据流进行单遍扫描或有限次数扫描,通过在线处理的方式实时产生结果。

  • 这使得时间亚线性算法在实时数据处理场景中具有显著优势,能够满足对实时性要求较高的应用需求。

2.3.3 近似计算

  • 在某些情况下,精确解并不是必需的,或者精确解的计算成本过高。

  • 例如,在一些机器学习或数据挖掘任务中,我们可能只需要找到一个足够好的解,而不是最优解。

  • 时间亚线性判定算法通过提供近似解来满足这些实际需求。

  • 它们通过牺牲一定的精确性来换取计算效率的提升,从而在保持一定精度的同时降低计算复杂度。

  • 这使得时间亚线性算法在需要快速得到结果且对精度要求不是非常高的场景中具有广泛应用。

2.3.4 稀疏数据操作

  • 在处理含有大量零元素的稀疏矩阵或稀疏图时,传统的算法往往需要遍历整个数据结构进行计算,导致计算效率低下。
  • 而时间亚线性判定算法则能够利用稀疏性的特点,通过跳过零元素进行计算来显著提高处理效率。
  • 例如,在一些图算法或矩阵运算中,时间亚线性算法可以利用稀疏性的特性来减少不必要的计算量,从而在保持一定精度的同时提高计算效率。这使得时间亚线性算法在稀疏数据操作中具有显著优势。

2.4 代码示例

# -*- coding:utf-8 -*-
# @Time   : 2024-08-10
# @Author : Carl_DJimport mmh3  # MurmurHash3,一个非加密的哈希函数,常用于散列
from bitarray import bitarray  # 用于创建和操作位数组# 定义Bloom Filter类
class BloomFilter:def __init__(self, size, hash_num):"""初始化Bloom Filter实例:param size: 位数组的大小:param hash_num: 使用的哈希函数数量"""self.size = size  # 位数组的大小self.hash_num = hash_num  # 使用的哈希函数数量self.bit_array = bitarray(size)  # 创建一个指定长度的位数组self.bit_array.setall(0)  # 将位数组的所有位初始化为0def add(self, string):"""添加元素到Bloom Filter中:param string: 要添加的字符串"""# 对于每一个哈希函数for seed in range(self.hash_num):# 使用MurmurHash3对字符串进行哈希运算,并取模以确保结果在位数组范围内result = mmh3.hash(string, seed) % self.size# 将计算出的位位置设置为1self.bit_array[result] = 1def lookup(self, string):"""查找元素是否可能存在于Bloom Filter中:param string: 要查找的字符串:return: 如果所有位都为1,则返回"Probably",否则返回"Definitely not""""# 对于每一个哈希函数for seed in range(self.hash_num):# 使用MurmurHash3对字符串进行哈希运算,并取模以确保结果在位数组范围内result = mmh3.hash(string, seed) % self.size# 检查对应位是否为0if self.bit_array[result] == 0:# 如果有一个位为0,则该元素肯定不在集合中return "Definitely not"# 如果所有位都为1,则该元素可能存在(也可能误报)return "Probably"# 创建一个Bloom Filter实例
bloom = BloomFilter(500000, 7)# 向Bloom Filter中添加字符串"hello"
bloom.add("hello")# 查找"hello"是否存在于Bloom Filter中
print(bloom.lookup("hello"))  # 输出: Probably# 查找"world"是否存在于Bloom Filter中
print(bloom.lookup("world"))  # 输出: Definitely not

3、总结

时间亚线性判定算法在处理大规模数据集时具有显著优势,它们通过高效的抽样、空间压缩、数据结构优化和近似计算等技术,在保持一定精确度的同时显著提高处理效率。

这些算法在大数据分析、流数据处理、稀疏数据操作等领域有着广泛的应用前景。

随着数据量的不断增长,掌握和应用这些算法技术对于提升数据处理能力至关重要。

我是小鱼

  • CSDN 博客专家
  • 阿里云 专家博主
  • 51CTO博客专家
  • 企业认证金牌面试官
  • 多个名企认证&特邀讲师等
  • 名企签约职场面试培训、职场规划师
  • 多个国内主流技术社区的认证专家博主
  • 多款主流产品(阿里云等)评测一等奖获得者

关注小鱼,学习【大数据算法】领域最新最全的领域知识。

这篇关于【大数据算法】时间亚线性算法之:时间亚线性判定算法概述。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125610

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第