YOLOv9改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络

本文主要是介绍YOLOv9改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文记录的是基于ShufflenetV2的YOLOv9目标检测轻量化改进方法研究FLOPs是评价模型复杂独的重要指标,但其无法考虑到模型的内存访问成本和并行度,因此本文在YOLOv9的基础上引入ShufflenetV2使其在在保持准确性的同时提高模型的运行效率

模型参数量计算量推理速度(bs=32)
YOLOv9-c50.69M236.6GFLOPs32.1ms
Improved42.88M194.5GFLOPs23.2ms

文章目录

  • 一、本文介绍
  • 二、ShuffleNet V2设计原理
  • 三、ShuffleNet V2基础模块的实现代码
  • 四、添加步骤
    • 4.1 修改common.py
    • 4.2 修改yolo.py
  • 五、yaml模型文件
    • 5.1 模型改进⭐
  • 六、成功运行结果


二、ShuffleNet V2设计原理

ShuffleNet V2是一种高效的卷积神经网络架构,其模型结构及优势如下:

  1. 模型结构
    • 回顾ShuffleNet v1ShuffleNet是一种广泛应用于低端设备的先进网络架构,为增加在给定计算预算下的特征通道数量,采用了点组卷积和瓶颈结构,但这增加了内存访问成本(MAC),且过多的组卷积和元素级“Add”操作也存在问题。
    • 引入Channel Split和ShuffleNet V2:为解决上述问题,引入了名为Channel Split的简单操作。在每个单元开始时,将 c c c个特征通道的输入分为两个分支,分别具有 c − c ′ c - c' cc c ′ c' c个通道。一个分支保持不变,另一个分支由三个具有相同输入和输出通道的卷积组成,以满足G1(平衡卷积,即相等的通道宽度可最小化MAC)。两个 1 × 1 1 \times 1 1×1卷积不再是组式的,这部分是为了遵循G2(避免过多的组卷积增加MAC),部分是因为拆分操作已经产生了两个组。卷积后,两个分支连接,通道数量保持不变,并使用与ShuffleNet v1相同的“通道洗牌”操作来实现信息通信。对于空间下采样,单元进行了略微修改,删除了通道拆分操作,使输出通道数量加倍。
    • 整体网络结构:通过反复堆叠构建块来构建整个网络,设置 c ′ = c / 2 c' = c/2 c=c/2,整体网络结构与ShuffleNet v1相似,并在全局平均池化之前添加了一个额外的 1 × 1 1 \times 1 1×1卷积层来混合特征。
  2. 优势
    • 高效且准确:遵循了高效网络设计的所有准则,每个构建块的高效率使其能够使用更多的特征通道和更大的网络容量,并且在每个块中,一半的特征通道直接通过块并加入下一个块,实现了一种特征重用模式,类似于DenseNet,但更高效。
    • 速度优势明显:在与其他网络架构的比较中,ShuffleNet v2在速度方面表现出色,特别是在GPU上明显快于其他网络(如MobileNet v2、ShuffleNet v1和Xception)。在ARM上,ShuffleNet v1、Xception和ShuffleNet v2的速度相当,但MobileNet v2较慢,这是因为MobileNet v2的MAC较高。
    • 兼容性好:可以与其他技术(如Squeeze - and - excitation模块)结合进一步提高性能。

论文:https://arxiv.org/pdf/1807.11164.pdf
源码:https://gitcode.com/gh_mirrors/sh/ShuffleNet-Series/blob/master/ShuffleNetV2/blocks.py?utm_source=csdn_github_accelerator&isLogin=1

三、ShuffleNet V2基础模块的实现代码

ShuffleNet V2基础模块的实现代码如下:

def channel_shuffle(x, groups):batchsize, num_channels, height, width = x.data.size()channels_per_group = num_channels // groups# reshapex = x.view(batchsize, groups,channels_per_group, height, width)x = torch.transpose(x, 1, 2).contiguous()# flattenx = x.view(batchsize, -1, height, width)return xclass conv_bn_relu_maxpool(nn.Module):def __init__(self, c1, c2):  # ch_in, ch_outsuper(conv_bn_relu_maxpool, self).__init__()self.conv = nn.Sequential(nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(c2),nn.ReLU(inplace=True),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)def forward(self, x):return self.maxpool(self.conv(x))class Shuffle_Block(nn.Module):def __init__(self, inp, oup, stride):super(Shuffle_Block, self).__init__()if not (1 <= stride <= 3):raise ValueError('illegal stride value')self.stride = stridebranch_features = oup // 2assert (self.stride != 1) or (inp == branch_features << 1)if self.stride > 1:self.branch1 = nn.Sequential(self.depthwise_conv(inp, inp, kernel_size=3, stride=self.stride, padding=1),nn.BatchNorm2d(inp),nn.Conv2d(inp, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),)self.branch2 = nn.Sequential(nn.Conv2d(inp if (self.stride > 1) else branch_features,branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),nn.BatchNorm2d(branch_features),nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),)@staticmethoddef depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)def forward(self, x):if self.stride == 1:x1, x2 = x.chunk(2, dim=1)  # 按照维度1进行splitout = torch.cat((x1, self.branch2(x2)), dim=1)else:out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)out = channel_shuffle(out, 2)return out

四、添加步骤

4.1 修改common.py

此处需要修改的文件是models/common.py

common.py中定义了网络结构的通用模块,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。

此时需要将上方实现的代码添加到common.py中。

在这里插入图片描述

注意❗:在4.2小节中的yolo.py文件中需要声明的模块名称为:conv_bn_relu_maxpoolShuffle_Block

4.2 修改yolo.py

此处需要修改的文件是models/yolo.py

yolo.py用于函数调用,我们只需要将common.py中定义的新的模块名添加到parse_model函数下即可。

conv_bn_relu_maxpool模块以及Shuffle_Block模块添加后如下:

在这里插入图片描述


五、yaml模型文件

5.1 模型改进⭐

在代码配置完成后,配置模型的YAML文件。

此处以models/detect/yolov9-c.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-shufflenetv2.yaml

yolov9-c.yaml中的内容复制到yolov9-c-shufflenetv2.yaml文件下,修改nc数量等于自己数据中目标的数量。

📌 模型的修改方法是将YOLOv9的骨干网络替换成Shufflenet V2ShuffleNet V2 在设计上注重减少内存访问成本并提高并行度,这有助于在保持准确性的同时提高模型的运行效率。相比YOLOv9原骨干网络,ShuffleNet V2 具有更低的计算复杂度,能够在相同或更少的计算资源下完成推理,对于实时性要求较高的任务具有重要意义。

结构如下:

# YOLOv9# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, conv_bn_relu_maxpool, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Shuffle_Block, [ 128, 2 ]],  # 2-P2/4[-1, 3, Shuffle_Block, [ 128, 1 ]],  # 3[-1, 1, Shuffle_Block, [ 256, 2 ]],  # 4-P4/16 [-1, 7, Shuffle_Block, [ 256, 1 ]],  # 5[-1, 1, Shuffle_Block, [ 512, 2 ]],  # 6-P4/16[-1, 3, Shuffle_Block, [ 512, 1 ]],  # 7]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 3], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 11], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 8], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[3, 1, CBLinear, [[256]]], # 23[5, 1, CBLinear, [[256, 512]]], # 24[7, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[21, 22, 23, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[22, 23, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[23, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detection head# detect[[29, 32, 35, 14, 17, 20], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

六、成功运行结果

分别打印网络模型可以看到Shuffle_Block已经加入到模型中,并可以进行训练了。

yolov9-c-shufflenetv2

                 from  n    params  module                                  arguments                     0                -1  1         0  models.common.Silence                   []                            1                -1  1      1856  models.common.conv_bn_relu_maxpool      [3, 64]                       2                -1  1     14080  models.common.Shuffle_Block             [64, 128, 2]                  3                -1  3     27456  models.common.Shuffle_Block             [128, 128, 1]                 4                -1  1     52736  models.common.Shuffle_Block             [128, 256, 2]                 5                -1  7    242816  models.common.Shuffle_Block             [256, 256, 1]                 6                -1  1    203776  models.common.Shuffle_Block             [256, 512, 2]                 7                -1  3    404736  models.common.Shuffle_Block             [512, 512, 1]                 8                -1  1    656896  models.common.SPPELAN                   [512, 512, 256]               9                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          10           [-1, 5]  1         0  models.common.Concat                    [1]                           11                -1  1   2988544  models.common.RepNCSPELAN4              [768, 512, 512, 256, 1]       12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          13           [-1, 3]  1         0  models.common.Concat                    [1]                           14                -1  1    814336  models.common.RepNCSPELAN4              [640, 256, 256, 128, 1]       15                -1  1    164352  models.common.ADown                     [256, 256]                    16          [-1, 11]  1         0  models.common.Concat                    [1]                           17                -1  1   2988544  models.common.RepNCSPELAN4              [768, 512, 512, 256, 1]       18                -1  1    656384  models.common.ADown                     [512, 512]                    19           [-1, 8]  1         0  models.common.Concat                    [1]                           20                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      21                 3  1     33024  models.common.CBLinear                  [128, [256]]                  22                 5  1    197376  models.common.CBLinear                  [256, [256, 512]]             23                 7  1    656640  models.common.CBLinear                  [512, [256, 512, 512]]        24                 0  1      1856  models.common.Conv                      [3, 64, 3, 2]                 25                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               26                -1  1    212864  models.common.RepNCSPELAN4              [128, 256, 128, 64, 1]        27                -1  1    164352  models.common.ADown                     [256, 256]                    28  [21, 22, 23, -1]  1         0  models.common.CBFuse                    [[0, 0, 0]]                   29                -1  1    847616  models.common.RepNCSPELAN4              [256, 512, 256, 128, 1]       30                -1  1    656384  models.common.ADown                     [512, 512]                    31      [22, 23, -1]  1         0  models.common.CBFuse                    [[1, 1]]                      32                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       33                -1  1    656384  models.common.ADown                     [512, 512]                    34          [23, -1]  1         0  models.common.CBFuse                    [[2]]                         35                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       36[29, 32, 35, 14, 17, 20]  1  21542822  models.yolo.DualDDetect                 [1, [512, 512, 512, 256, 512, 512]]
yolov9-c-shufflenetv2 summary: 870 layers, 43094374 parameters, 43094342 gradients, 195.9 GFLOPs

这篇关于YOLOv9改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1125262

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}