基于ASO-BP原子探索优化BP神经网络实现数据预测Python实现

2024-08-31 18:52

本文主要是介绍基于ASO-BP原子探索优化BP神经网络实现数据预测Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文提出了一种基于ASO算法优化BP神经网络的数据预测方法。通过ASO算法对BP神经网络的权值和阈值进行优化,克服了BP神经网络易陷入局部最优解和对初始权值敏感的缺点。实验结果表明,优化后的BP神经网络在预测精度上得到了显著提升,为数据预测领域提供了一种新的有效方法。

一、ASO-BP算法概述

1.ASO原子探索算法

原子搜索算法(ASO)是一种受微观分子动力学启发的智能优化算法,于2019年提出。在ASO中,每个原子在搜索空间中的位置代表一个与原子质量相对应的解,较好的解表示较重的质量。种群中的所有原子会根据彼此之间的距离相互吸引或排斥,且较轻的原子会向较重的原子移动。通过计算Lennard-Jones势能,并利用加速度与速度随距离的关系来更新原子的位置,ASO算法能够有效地求解优化问题。

2.BP神经网络(BP)

BP神经网络是一种具有三层或三层以上的多层神经网络,包括输入层、隐含层和输出层。每一层都由若干个神经元组成,神经元之间通过加权和的方式传递信号,并经过激活函数进行非线性变换。BP神经网络的训练过程包括前向传播和反向传播两个阶段。在前向传播阶段,输入信号从输入层逐层传递到输出层;在反向传播阶段,根据输出误差调整各层之间的连接权重,使误差逐步减小。

3.ASO-BP神经网络回归预测方法

ASO-BP神经网络回归预测方法的基本思路如下:

(1)初始化:初始化BP神经网络的权重和偏置。初始化原子的位置(即神经网络的参数)。

(2)适应度函数:使用BP神经网络在训练集上进行训练,并计算验证集上的误差(如均方误差MSE)作为适应度值。

(3)速度和位置更新:根据原子之间的距离计算势能。根据势能和物理规律更新原子的速度和加速度。根据速度和加速度更新原子的位置,即更新BP神经网络的权值和阈值。

(4)迭代:重复上述步骤,直到达到最大迭代次数或满足其他停止条件。

(5)结果输出:使用最优原子的权重和阈值(即最优参数集)的BP神经网络进行预测。

二、实验步骤

ASO-BP神经网络回归预测步骤:

1.数据清洗:去除缺失值和异常值。

2.特征选择:根据相关性分析选择对预测结果影响显著的特征。

3.数据归一化:将特征值缩放到同一量纲,提高训练效率。

4.定义BP神经网络结构:确定输入层、隐藏层(数量、神经元数)、输出层的结构。

5.初始化:设置ASO参数,包括初始种群规模、最大进化代数、自变量个数(即BP神经网络的权值和阈值总数)、自变量上下限等。

6.评估适应度:使用训练集数据训练BP神经网络,并计算训练集和测试集的均方误差作为适应度值。适应度值越小,表示解的质量越好。

7.更新原子位置:根据原子之间的距离计算势能。根据势能和物理规律更新原子的速度和加速度。根据速度和加速度更新原子的位置,即更新BP神经网络的权值和阈值。

8.迭代优化重复步骤6和7,直到达到最大进化代数或满足其他停止条件。

9.模型评估:在训练完成后,评估模型在训练集和测试集上的性能,使用不同的指标(如R²、MAE、MBE、RMSE、MAPE)。

10.结果可视化:绘制训练集和测试集的预测值与真实值的对比图。

 

代码部分

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
import torch.optim as optim
import matplotlib
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False# 导入数据
data = pd.read_csv('数据集.csv').values# 划分训练集和测试集
np.random.seed(0)
temp = np.random.permutation(len(data))P_train = data[temp[:80], :7]
T_train = data[temp[:80], 7]
P_test = data[temp[80:], :7]
T_test = data[temp[80:], 7]# 数据归一化
scaler_input = MinMaxScaler(feature_range=(0, 1))
scaler_output = MinMaxScaler(feature_range=(0, 1))p_train = scaler_input.fit_transform(P_train)
p_test = scaler_input.transform(P_test)t_train = scaler_output.fit_transform(T_train.reshape(-1, 1)).ravel()
t_test = scaler_output.transform(T_test.reshape(-1, 1)).ravel()
# 转换为 PyTorch 张量
p_train = torch.tensor(p_train, dtype=torch.float32).to(device)
t_train = torch.tensor(t_train, dtype=torch.float32).view(-1, 1).to(device)
p_test = torch.tensor(p_test, dtype=torch.float32).to(device)
t_test = torch.tensor(t_test, dtype=torch.float32).view(-1, 1).to(device)# 初始化网络
class BPNetwork(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(BPNetwork, self).__init__()self.hidden = nn.Linear(input_size, hidden_size)self.relu = nn.ReLU()self.output = nn.Linear(hidden_size, output_size)def forward(self, x):x = self.relu(self.hidden(x))x = self.output(x)return xinput_size = p_train.shape[1]
hidden_size = 11
output_size = t_train.shape[1]bp_net = BPNetwork(input_size, hidden_size, output_size).to(device)# 损失函数
criterion = nn.MSELoss()# 定义适应度函数(误差函数)
def fitness_function(network, data, target):network.eval()with torch.no_grad():output = network(data)loss_fn = nn.MSELoss()loss = loss_fn(output, target)return loss.item()

四、实验与结果

1.数据准备

为了验证ASO优化BP神经网络的有效性,本文采用某数据集进行实验。下面所示本次采用的数据集(部分)。

 

2.结果分析

实验结果表明,经过ASO优化后的BP神经网络在预测精度上显著优于未经优化的BP神经网络。具体地,优化后的BP神经网络在测试集上的均方误差降低了约20%,表明ASO算法能够有效地提升BP神经网络的预测性能。

(1) 训练集预测值和真实值对比结果 

 

(2) 测试集预测值和真实值对比结果  

 

(3) 训练集线性回归图 

 

(4) 测试集线性回归图 

 

(5) 其他性能计算 

 

五、结论

本文提出了一种基于ASO算法优化BP神经网络的数据预测方法。通过ASO算法对BP神经网络的权值和阈值进行优化,克服了BP神经网络易陷入局部最优解和对初始权值敏感的缺点。实验结果表明,优化后的BP神经网络在预测精度上得到了显著提升,为数据预测领域提供了一种新的有效方法。

这篇关于基于ASO-BP原子探索优化BP神经网络实现数据预测Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124724

相关文章

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

C# Where 泛型约束的实现

《C#Where泛型约束的实现》本文主要介绍了C#Where泛型约束的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用的对象约束分类where T : structwhere T : classwhere T : ne

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

将Java程序打包成EXE文件的实现方式

《将Java程序打包成EXE文件的实现方式》:本文主要介绍将Java程序打包成EXE文件的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录如何将Java程序编程打包成EXE文件1.准备Java程序2.生成JAR包3.选择并安装打包工具4.配置Launch4

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa