算法day16|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树

本文主要是介绍算法day16|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法day16|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树

  • 654.最大二叉树
  • 617.合并二叉树
    • 1.额外申请空间(失败)
    • 2.不额外申请空间
  • 700.二叉搜索树中的搜索
  • 98.验证二叉搜索树
    • 1.遍历后排序
    • 2.边遍历遍排序
    • 3.指针记录法

654.最大二叉树

这道题很简单,其实就是105、106的变式题。具体代码如下:

class Solution {
public:TreeNode*traversal(vector<int>& nums){if(nums.empty())return nullptr;int max=nums[0];int index=0;for(int i=1;i<nums.size();i++){if(nums[i]>max){max=nums[i];index=i;} }TreeNode*root=new TreeNode(max);if(nums.size()==1)return root;vector<int> leftNums(nums.begin(),nums.begin()+index);vector<int> rightNums(nums.begin()+index+1,nums.end());root->left=traversal(leftNums);root->right=traversal(rightNums);return root;}TreeNode* constructMaximumBinaryTree(vector<int>& nums) {if(!nums.empty())return traversal(nums);elsereturn nullptr;}
};

总体思路与105、106类似,甚至更简单。

617.合并二叉树

1.额外申请空间(失败)

不知道为什么运行不了…,代码如下:

class Solution {
public:TreeNode* traversal(TreeNode* root1, TreeNode* root2){if(root1==nullptr&&root2==nullptr)return nullptr;TreeNode*root=new TreeNode();if(root1!=nullptr&&root2!=nullptr)root->val=root1->val+root2->val;else if(root1==nullptr&&root2!=nullptr)root->val=root2->val;else if(root1!=nullptr&&root2==nullptr)root->val=root1->val;root->left=traversal(root1->left,root2->left);root->right=traversal(root1->right,root2->right);return root;}TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {return traversal(root1,root2);}
};

2.不额外申请空间

class Solution {
public:
TreeNode* traversal(TreeNode* root1, TreeNode* root2){if(!root1&&!root2)return nullptr;else if(!root1)return root2;else if(!root2)return root1;else{root1->val+=root2->val;}root1->left=traversal(root1->left,root2->left);root1->right=traversal(root1->right,root2->right);return root1;}TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {return traversal(root1,root2);}
};

直接在root1上进行操作,不用额外申请空间。

700.二叉搜索树中的搜索

class Solution {
public:TreeNode* traversal(TreeNode* root, int val){if(root==nullptr)return nullptr;if(root->val>val)return traversal(root->left,val);if(root->val<val)return traversal(root->right,val);elsereturn root;}TreeNode* searchBST(TreeNode* root, int val) {return traversal(root,val);}
};

要注意一下BST的特点:BST首先得是二叉平衡树,满足左<中<右。所以:

if(root->val>val)return traversal(root->left,val);if(root->val<val)return traversal(root->right,val);

另外,如果递归有返回值的话,在单层递归里面肯定是需要设置变量来接收的,或者直接return 递归。

98.验证二叉搜索树

1.遍历后排序

class Solution {
public:void traversal(TreeNode* root,vector<int> &vec){if(root==nullptr)return ;traversal(root->left,vec);vec.push_back(root->val);traversal(root->right,vec);}bool isValidBST(TreeNode* root) {if(root==nullptr)return true;else{vector<int> vec;traversal(root,vec);for(int i=0;i<vec.size()-1;i++){if(vec[i]>=vec[i+1])return false;}return true;}}
};

这题的易错点就是必须保证左子树上的所有元素都要小于根节点,右子树同理,而不是仅仅是单个左孩子结点或者右孩子结点。这样的思路用递归就很难实现了。

所以我们另辟蹊径,利用二叉搜索树的最重要的特征之一:中序序列单调递增 。我们只需要用数组收集中序序列,然后去判断它是否递增即可。

2.边遍历遍排序

对于递增的判断其实是可以在遍历过程中就实现的,代码如下:

class Solution {
public:long long MaxValue = LONG_MIN;bool traversal(TreeNode* root){if(root==nullptr)return true;bool left=traversal(root->left);if(root->val>MaxValue)MaxValue=root->val;elsereturn false; bool right=traversal(root->right);return left&&right;}bool isValidBST(TreeNode* root) {return traversal(root);}
};

为了判断中序序列是否递增,我们需要一个值来继承之前结点的大小,然后与当前结点比较即可。由于力扣中输入了Int的最小值,所以我们采用long long型的最小值来接受第一个元素,十分巧妙:

		long long MaxValue = LONG_MIN;if(root->val>MaxValue)MaxValue=root->val;elsereturn false;

这样就可以保证第一个数的顺利进行。因为不想for循环,递归的时候是很难定位到第几个元素的,所以想把第哪个元素赋值为几,这是做不到的。只有在深刻理解逻辑之后做一些巧思。

3.指针记录法

class Solution {
public:TreeNode*pre=nullptr;bool traversal(TreeNode* root){if(root==nullptr)return true;bool left=traversal(root->left);if(pre!=nullptr&&pre->val>=root->val)return false;elsepre=root;bool right=traversal(root->right);return left&&right;}bool isValidBST(TreeNode* root) {return traversal(root);}
};

我们改用指针来记录,实现一个更巧妙的逻辑:用指针记录前面的值,只有当指针的值大于当前的值时,return false。问题在于,指针该如何记录呢?逻辑很巧妙,因为记录第一个值是非常关键的。初始时,我们设pre为null,第一次就是因为pre为null,成功赋值;其他时候是因为满足排序,所以成功赋值。它们的逻辑是有区别的。

这篇关于算法day16|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124324

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO