算法day16|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树

本文主要是介绍算法day16|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法day16|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树

  • 654.最大二叉树
  • 617.合并二叉树
    • 1.额外申请空间(失败)
    • 2.不额外申请空间
  • 700.二叉搜索树中的搜索
  • 98.验证二叉搜索树
    • 1.遍历后排序
    • 2.边遍历遍排序
    • 3.指针记录法

654.最大二叉树

这道题很简单,其实就是105、106的变式题。具体代码如下:

class Solution {
public:TreeNode*traversal(vector<int>& nums){if(nums.empty())return nullptr;int max=nums[0];int index=0;for(int i=1;i<nums.size();i++){if(nums[i]>max){max=nums[i];index=i;} }TreeNode*root=new TreeNode(max);if(nums.size()==1)return root;vector<int> leftNums(nums.begin(),nums.begin()+index);vector<int> rightNums(nums.begin()+index+1,nums.end());root->left=traversal(leftNums);root->right=traversal(rightNums);return root;}TreeNode* constructMaximumBinaryTree(vector<int>& nums) {if(!nums.empty())return traversal(nums);elsereturn nullptr;}
};

总体思路与105、106类似,甚至更简单。

617.合并二叉树

1.额外申请空间(失败)

不知道为什么运行不了…,代码如下:

class Solution {
public:TreeNode* traversal(TreeNode* root1, TreeNode* root2){if(root1==nullptr&&root2==nullptr)return nullptr;TreeNode*root=new TreeNode();if(root1!=nullptr&&root2!=nullptr)root->val=root1->val+root2->val;else if(root1==nullptr&&root2!=nullptr)root->val=root2->val;else if(root1!=nullptr&&root2==nullptr)root->val=root1->val;root->left=traversal(root1->left,root2->left);root->right=traversal(root1->right,root2->right);return root;}TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {return traversal(root1,root2);}
};

2.不额外申请空间

class Solution {
public:
TreeNode* traversal(TreeNode* root1, TreeNode* root2){if(!root1&&!root2)return nullptr;else if(!root1)return root2;else if(!root2)return root1;else{root1->val+=root2->val;}root1->left=traversal(root1->left,root2->left);root1->right=traversal(root1->right,root2->right);return root1;}TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {return traversal(root1,root2);}
};

直接在root1上进行操作,不用额外申请空间。

700.二叉搜索树中的搜索

class Solution {
public:TreeNode* traversal(TreeNode* root, int val){if(root==nullptr)return nullptr;if(root->val>val)return traversal(root->left,val);if(root->val<val)return traversal(root->right,val);elsereturn root;}TreeNode* searchBST(TreeNode* root, int val) {return traversal(root,val);}
};

要注意一下BST的特点:BST首先得是二叉平衡树,满足左<中<右。所以:

if(root->val>val)return traversal(root->left,val);if(root->val<val)return traversal(root->right,val);

另外,如果递归有返回值的话,在单层递归里面肯定是需要设置变量来接收的,或者直接return 递归。

98.验证二叉搜索树

1.遍历后排序

class Solution {
public:void traversal(TreeNode* root,vector<int> &vec){if(root==nullptr)return ;traversal(root->left,vec);vec.push_back(root->val);traversal(root->right,vec);}bool isValidBST(TreeNode* root) {if(root==nullptr)return true;else{vector<int> vec;traversal(root,vec);for(int i=0;i<vec.size()-1;i++){if(vec[i]>=vec[i+1])return false;}return true;}}
};

这题的易错点就是必须保证左子树上的所有元素都要小于根节点,右子树同理,而不是仅仅是单个左孩子结点或者右孩子结点。这样的思路用递归就很难实现了。

所以我们另辟蹊径,利用二叉搜索树的最重要的特征之一:中序序列单调递增 。我们只需要用数组收集中序序列,然后去判断它是否递增即可。

2.边遍历遍排序

对于递增的判断其实是可以在遍历过程中就实现的,代码如下:

class Solution {
public:long long MaxValue = LONG_MIN;bool traversal(TreeNode* root){if(root==nullptr)return true;bool left=traversal(root->left);if(root->val>MaxValue)MaxValue=root->val;elsereturn false; bool right=traversal(root->right);return left&&right;}bool isValidBST(TreeNode* root) {return traversal(root);}
};

为了判断中序序列是否递增,我们需要一个值来继承之前结点的大小,然后与当前结点比较即可。由于力扣中输入了Int的最小值,所以我们采用long long型的最小值来接受第一个元素,十分巧妙:

		long long MaxValue = LONG_MIN;if(root->val>MaxValue)MaxValue=root->val;elsereturn false;

这样就可以保证第一个数的顺利进行。因为不想for循环,递归的时候是很难定位到第几个元素的,所以想把第哪个元素赋值为几,这是做不到的。只有在深刻理解逻辑之后做一些巧思。

3.指针记录法

class Solution {
public:TreeNode*pre=nullptr;bool traversal(TreeNode* root){if(root==nullptr)return true;bool left=traversal(root->left);if(pre!=nullptr&&pre->val>=root->val)return false;elsepre=root;bool right=traversal(root->right);return left&&right;}bool isValidBST(TreeNode* root) {return traversal(root);}
};

我们改用指针来记录,实现一个更巧妙的逻辑:用指针记录前面的值,只有当指针的值大于当前的值时,return false。问题在于,指针该如何记录呢?逻辑很巧妙,因为记录第一个值是非常关键的。初始时,我们设pre为null,第一次就是因为pre为null,成功赋值;其他时候是因为满足排序,所以成功赋值。它们的逻辑是有区别的。

这篇关于算法day16|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124324

相关文章

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python视频剪辑合并操作的实现示例

《Python视频剪辑合并操作的实现示例》很多人在创作视频时都需要进行剪辑,本文主要介绍了Python视频剪辑合并操作的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录介绍安装FFmpegWindowsMACOS安装MoviePy剪切视频合并视频转换视频结论介绍

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

C# ComboBox下拉框实现搜索方式

《C#ComboBox下拉框实现搜索方式》文章介绍了如何在加载窗口时实现一个功能,并在ComboBox下拉框中添加键盘事件以实现搜索功能,由于数据不方便公开,作者表示理解并希望得到大家的指教... 目录C# ComboBox下拉框实现搜索步骤一步骤二步骤三总结C# ComboBox下拉框实现搜索步骤一这

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第