Python自适应光学模态星形小波分析和像差算法

2024-08-31 15:04

本文主要是介绍Python自适应光学模态星形小波分析和像差算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯星形小波分析像差测量 | 🎯对比傅里叶和小波分析 | 🎯定义多尺度图像质量度量,矩阵数据 | 🎯像差校正算法 | 🎯受激发射损耗显微镜布局 | 🎯干涉仪分支校准,求解正则化最小二乘问题计算控制矩阵 | 🎯像差理论多项式逼近算法

📜光学和散射用例

🍪语言内容分比

在这里插入图片描述
在这里插入图片描述

🍇Python光学成像点源响应

荧光显微镜是一种光学显微镜,它使用荧光代替或补充散射、反射和衰减或吸收,来研究有机或无机物质的性质。“荧光显微镜”是指任何使用荧光生成图像的显微镜,无论是像落射荧光显微镜这样的简单装置,还是像共聚焦显微镜这样更复杂的设计,它都使用光学切片来获得更高分辨率的荧光图像。

目前使用的大多数荧光显微镜都是落射荧光显微镜,其中荧光团的激发和荧光的检测是通过同一光路(即通过物镜)进行的。这些显微镜在生物学中得到广泛应用,是更先进的显微镜设计的基础,例如共聚焦显微镜和全内反射荧光显微镜 。

荧光显微镜需要强烈的近单色照明,而卤素灯等一些广泛使用的光源无法提供这种照明。主要使用四种类型的光源,包括带有激发滤光片的氙弧灯或汞蒸气灯、激光器、超连续光源和高功率 LED。激光器最广泛用于更复杂的荧光显微镜技术,如共聚焦显微镜和全内反射荧光显微镜,而氙气灯、汞灯和带有二向色激发滤光片的 LED 通常用于宽视野荧光显微镜。通过将两个微透镜阵列放入宽视野荧光显微镜的照明路径中,可以实现高度均匀的照明,变异系数为 1-2%。

在荧光显微镜中,获取的图像始终是显微镜下实际物体的模糊表示。这种模糊由所谓的点扩展函数描述。点扩展函数描述物体中的单个点在图像中的样子。

光学显微镜中的图像形成过程是线性的:当同时对两个物体 A 和 B 进行成像时,结果等于独立成像物体的总和。由于这种线性特性,可以通过将物体分成更小的部分、对每个部分进行成像,然后对结果求和来计算任何物体的图像。如果将物体分成越来越小的部分,它最终会成为一组无限小的点物体。这些点物体中的每一个都会在图像中产生一个点扩展函数,并分别移位和缩放到相应点的位置和强度。因此,生成的图像是一组(通常重叠的)点扩展函数。这种图像形成过程在数学上可以用卷积方程表示:与成像装置的点扩展函数卷积的物体给出获取的图像。

点扩展函数可能与物体平面中的位置无关,在这种情况下,它被称为平移不变。此外,如果系统没有失真,则图像平面坐标通过放大倍数 M 与物体平面坐标呈线性关系,如下所示:
( x i , y i ) = ( M x o , M y o ) \left(x_i, y_i\right)=\left(M x_o, M y_o\right) (xi,yi)=(Mxo,Myo)
如果成像系统产生倒置图像,我们可以简单地将图像平面坐标轴视为与物体平面坐标轴相反。有了这两个假设,即点扩展函数是平移不变的并且没有失真,计算图像平面卷积积分就是一个简单的过程。在数学上,我们可以将物平面场表示为:
O ( x o , y o ) = ∬ O ( u , v ) δ ( x o − u , y o − v ) d u d v O\left(x_o, y_o\right)=\iint O(u, v) \delta\left(x_o-u, y_o-v\right) d u d v O(xo,yo)=O(u,v)δ(xou,yov)dudv
即,作为加权脉冲函数的总和,尽管这实际上也只是说明 2D delta 函数的移位特性。以上面的形式重写物体透射率函数允许我们将图像平面场计算为每个单独脉冲函数的图像的叠加,即使用相同的加权函数作为图像平面中加权点扩散函数的叠加如在物平面中,即 O ( x o , y o ) O\left(x_o, y_o\right) O(xo,yo)。在数学上,图像表示为:
I ( x i , y i ) = ∬ O ( u , v ) PSF ⁡ ( x i / M − u , y i / M − v ) d u d v I\left(x_i, y_i\right)=\iint O(u, v) \operatorname{PSF}\left(x_i / M-u, y_i / M-v\right) d u d v I(xi,yi)=O(u,v)PSF(xi/Mu,yi/Mv)dudv
其中 PSF ⁡ ( x i / M − u , y i / M − v ) \operatorname{PSF}\left(x_i / M-u, y_i / M-v\right) PSF(xi/Mu,yi/Mv)是脉冲函数 δ ( x o − u , y o − v ) \delta\left(x_o-u, y_o-v\right) δ(xou,yov)的图像。

Python计算荧光显微镜点扩散函数示例

import numpy
import mfs
from matplotlib import pyplotdef mfs_example(cmap='hot',savebin=False,savetif=False,savevol=False,plot=True,**kwargs,
):args = {'shape': (512, 512),  'dims': (5.0, 5.0),  'ex_wavelen': 488.0,  'em_wavelen': 520.0, 'num_aperture': 1.2,'refr_index': 1.333,'magnification': 1.0,'pinhole_radius': 0.05, 'pinhole_shape': 'square',}args.update(kwargs)obsvol = mfs.mfs(mfs.ISOTROPIC | mfs.CONFOCAL, **args)  exmfs = obsvol.exmfsemmfs = obsvol.emmfsgauss = gauss2 = mfs.mfs(mfs.GAUSSIAN | mfs.EXCITATION, **args  )assert exmfs is not Noneassert emmfs is not Noneprint(exmfs)print(emmfs)print(obsvol)print(gauss)print(gauss2)if savebin:emmfs.data.tofile('emmfs.bin')exmfs.data.tofile('exmfs.bin')gauss.data.tofile('gauss.bin')obsvol.data.tofile('obsvol.bin')if savetif:from tifffile import imwriteimwrite('emmfs.tif', emmfs.data)imwrite('exmfs.tif', exmfs.data)imwrite('gauss.tif', gauss.data)imwrite('obsvol.tif', obsvol.data)if savevol:from tifffile import imwriteimwrite('emmfs_vol.tif', emmfs.volume())imwrite('exmfs_vol.tif', exmfs.volume())imwrite('gauss_vol.tif', gauss.volume())imwrite('obsvol_vol.tif', obsvol.volume())if not plot:returnpyplot.rc('font', family='sans-serif', weight='normal')pyplot.figure(dpi=96, figsize=(9.5, 5.0), frameon=True, facecolor='w', edgecolor='w')pyplot.subplots_adjust(bottom=0.02, top=0.92, left=0.02, right=0.98, hspace=0.01, wspace=0.01)ax = exmfs.imshow(241, cmap=cmap)[0]emmfs.imshow(242, sharex=ax, sharey=ax, cmap=cmap)obsvol.imshow(243, sharex=ax, sharey=ax, cmap=cmap)gauss.imshow(244, sharex=ax, sharey=ax, cmap=cmap)i = 0mfs.imshow(245, data=exmfs.slice(i), sharex=ax, cmap=cmap)mfs.imshow(246, data=emmfs.slice(i), sharex=ax, cmap=cmap)mfs.imshow(247, data=obsvol.slice(i), sharex=ax, cmap=cmap)mfs.imshow(248, data=gauss.slice(i), sharex=ax, cmap=cmap)z = numpy.arange(0, gauss.dims.ou[0], gauss.dims.ou[0] / gauss.dims.px[0])r = numpy.arange(0, gauss.dims.ou[1], gauss.dims.ou[1] / gauss.dims.px[1])zr_max = 20.0pyplot.figure()pyplot.subplot(211)pyplot.title('mfs cross sections')pyplot.plot(r, exmfs[0], 'r-', label=exmfs.name + ' (r)')pyplot.plot(r, gauss2[0], 'r:', label='')pyplot.plot(r, obsvol[0], 'b-', label=obsvol.name + ' (r)')pyplot.plot(r, gauss[0], 'b:', label="")pyplot.plot(z, exmfs[:, 0], 'm-', label=exmfs.name + ' (z)')pyplot.plot(z, gauss2[:, 0], 'm:', label='')pyplot.plot(z, obsvol[:, 0], 'c-', label=obsvol.name + ' (z)')pyplot.plot(z, gauss[:, 0], 'c:', label='')pyplot.legend()pyplot.axis([0, zr_max, 0, 1])pyplot.subplot(212)pyplot.title('Residuals of gaussian approximation')pyplot.plot(r, exmfs[0] - gauss2[0], 'r-', label=exmfs.name + ' (r)')pyplot.plot(r, obsvol[0] - gauss[0], 'b-', label=obsvol.name + ' (r)')pyplot.plot(z, exmfs[:, 0] - gauss2[:, 0], 'm-', label=exmfs.name + ' (z)')pyplot.plot(z, obsvol[:, 0] - gauss[:, 0], 'c-', label=obsvol.name + ' (z)')pyplot.axis([0, zr_max, -0.25, 0.25])pyplot.tight_layout()pyplot.show()if __name__ == '__main__':mfs_example()

👉更新:亚图跨际

这篇关于Python自适应光学模态星形小波分析和像差算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124243

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An