【线段树】2569. 更新数组后处理求和查询

2024-08-31 13:28

本文主要是介绍【线段树】2569. 更新数组后处理求和查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及知识点

C++线段树

LeetCode2569. 更新数组后处理求和查询

给你两个下标从 0 开始的数组 nums1 和 nums2 ,和一个二维数组 queries 表示一些操作。总共有 3 种类型的操作:
操作类型 1 为 queries[i] = [1, l, r] 。你需要将 nums1 从下标 l 到下标 r 的所有 0 反转成 1 并且所有 1 反转成 0 。l 和 r 下标都从 0 开始。
操作类型 2 为 queries[i] = [2, p, 0] 。对于 0 <= i < n 中的所有下标,令 nums2[i] = nums2[i] + nums1[i] * p 。
操作类型 3 为 queries[i] = [3, 0, 0] 。求 nums2 中所有元素的和。
请你返回一个 数组,包含 所有第三种操作类型 的答案。
示例 1:
输入:nums1 = [1,0,1], nums2 = [0,0,0], queries = [[1,1,1],[2,1,0],[3,0,0]]
输出:[3]
解释:第一个操作后 nums1 变为 [1,1,1] 。第二个操作后,nums2 变成 [1,1,1] ,所以第三个操作的答案为 3 。所以返回 [3] 。
示例 2:
输入:nums1 = [1], nums2 = [5], queries = [[2,0,0],[3,0,0]]
输出:[5]
解释:第一个操作后,nums2 保持不变为 [5] ,所以第二个操作的答案是 5 。所以返回 [5] 。
提示:
1 <= nums1.length,nums2.length <= 105
nums1.length = nums2.length
1 <= queries.length <= 105
queries[i].length = 3
0 <= l <= r <= nums1.length - 1
0 <= p <= 106
0 <= nums1[i] <= 1
0 <= nums2[i] <= 109

线段树

lineTree表示num1。
操作二:sum = sum + p × \times × lineTree.All
操作三:返回sum。
注意:不要忘记了初始化lineTree和sum

代码

核心代码

template<class TSave, class TRecord >
class CSingeUpdateLineTree
{
protected:virtual void OnInit(TSave& save, int iSave) = 0;virtual void OnQuery(TSave& save) = 0;virtual void OnUpdate(TSave& save, int iSave, const TRecord& update) = 0;virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, int iSaveLeft, int iSaveRight) = 0;
};template<class TSave, class TRecord >
class CVectorSingUpdateLineTree : public CSingeUpdateLineTree<TSave, TRecord>
{
public:CVectorSingUpdateLineTree(int iEleSize, TSave tDefault) :m_iEleSize(iEleSize),m_save(iEleSize*4,tDefault){}void Update(int index, TRecord update) {Update(1, 0, m_iEleSize-1, index, update);}void Query(int leftIndex, int leftRight) {Query(1, 0, m_iEleSize - 1, leftIndex, leftRight);}void Init() {Init(1, 0, m_iEleSize - 1);}TSave QueryAll() {return m_save[1];}
protected:int m_iEleSize;void Init(int iNodeNO, int iSaveLeft, int iSaveRight){if (iSaveLeft == iSaveRight) {this->OnInit(m_save[iNodeNO], iSaveLeft);return;}const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;Init(iNodeNO * 2, iSaveLeft, mid);Init(iNodeNO * 2 + 1, mid + 1, iSaveRight);this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO*2], m_save[iNodeNO*2+1], iSaveLeft, iSaveRight);}void Query(int iNodeNO, int iSaveLeft, int iSaveRight, int iQueryLeft, int iQueryRight) {if ((iSaveLeft >= iQueryLeft) && (iSaveRight <= iQueryRight)) {this->OnQuery(m_save[iNodeNO]);return;}if (iSaveLeft == iSaveRight) {//没有子节点return;}const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;if (mid >= iQueryLeft) {Query(iNodeNO * 2, iSaveLeft, mid, iQueryLeft, iQueryRight);}if (mid + 1 <= iQueryRight) {Query(iNodeNO * 2 + 1, mid + 1, iSaveRight, iQueryLeft, iQueryRight);}}void Update(int iNodeNO, int iSaveLeft, int iSaveRight, int iUpdateNO, TRecord update) {if (iSaveLeft == iSaveRight){this->OnUpdate(m_save[iNodeNO], iSaveLeft, update);return;}const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;if (iUpdateNO <= mid) {Update(iNodeNO * 2, iSaveLeft, mid, iUpdateNO, update);}else {Update(iNodeNO * 2 + 1, mid + 1, iSaveRight, iUpdateNO, update);}this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO*2], m_save[iNodeNO*2+1], iSaveLeft, iSaveRight);}vector<TSave> m_save;
};template<class TSave, class TRecord >
class CTreeSingeLineTree : public CSingeUpdateLineTree<TSave, TRecord>
{
protected:struct CTreeNode{		int Cnt()const { return m_iMaxIndex - m_iMinIndex + 1; }int m_iMinIndex;int m_iMaxIndex;TSave data;CTreeNode* m_lChild=nullptr, *m_rChild=nullptr;};CTreeNode* m_root;TSave m_tDefault;
public:CTreeSingeLineTree(int iMinIndex, int iMaxIndex, TSave tDefault) {m_tDefault = tDefault;m_root = CreateNode(iMinIndex, iMaxIndex);}void Init() {Init(m_root);}void Update(int index, TRecord update) {Update(m_root, index, update);}TSave QueryAll() {return m_root->data;}void Query(int leftIndex, int leftRight) {Query(m_root, leftIndex, leftRight);}
protected:void Query(CTreeNode* node, int iQueryLeft, int iQueryRight) {if ((node->m_iMinIndex >= iQueryLeft) && (node->m_iMaxIndex <= iQueryRight)) {this->OnQuery(node->data);return;}if (1 == node->Cnt()) {//没有子节点return;}CreateChilds(node);const int mid = node->m_iMinIndex + (node->m_iMaxIndex - node->m_iMinIndex) / 2;if (mid >= iQueryLeft) {Query(node->m_lChild, iQueryLeft, iQueryRight);}if (mid + 1 <= iQueryRight) {Query(node->m_rChild, iQueryLeft, iQueryRight);}}void Init(CTreeNode* node){if (1 == node->Cnt()) {this->OnInit(node->data, node->m_iMinIndex);return;}CreateChilds(node);Init(node->m_lChild);Init(node->m_rChild);this->OnUpdateParent(node->data, node->m_lChild->data, node->m_rChild->data, node->m_iMinIndex, node->m_iMaxIndex);}void Update(CTreeNode* node, int iUpdateNO, TRecord update) {if ((iUpdateNO < node->m_iMinIndex) || (iUpdateNO > node->m_iMaxIndex)) {return;}if (1 == node->Cnt()) {this->OnUpdate(node->data, node->m_iMinIndex, update);return;}CreateChilds(node);Update(node->m_lChild, iUpdateNO, update);Update(node->m_rChild, iUpdateNO, update);this->OnUpdateParent(node->data, node->m_lChild->data, node->m_rChild->data, node->m_iMinIndex, node->m_iMaxIndex);}void CreateChilds(CTreeNode* node) {if (nullptr != node->m_lChild) { return; }const int iSaveLeft = node->m_iMinIndex;const int iSaveRight = node->m_iMaxIndex;const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;node->m_lChild = CreateNode(iSaveLeft,mid);node->m_rChild = CreateNode(mid+1, iSaveRight);}CTreeNode* CreateNode(int iMinIndex, int iMaxIndex) {CTreeNode* node = new CTreeNode;node->m_iMinIndex = iMinIndex;node->m_iMaxIndex = iMaxIndex;node->data = m_tDefault;return node;}
};template<class TSave, class TRecord >
class CRangUpdateLineTree
{
protected:virtual void OnQuery(const TSave& save, const int& iSaveLeft, const int& iSaveRight) = 0;virtual void OnUpdate(TSave& save, const int& iSaveLeft, const int& iSaveRight, const TRecord& update) = 0;virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, const int& iSaveLeft, const int& iSaveRight) = 0;virtual void OnUpdateRecord(TRecord& old, const TRecord& newRecord) = 0;
};template<class TSave, class TRecord >
class CTreeRangeLineTree : public CRangUpdateLineTree<TSave, TRecord>
{
protected:struct CTreeNode{int Cnt()const { return m_iMaxIndex - m_iMinIndex + 1; }int m_iMinIndex;int m_iMaxIndex;TRecord record;TSave data;CTreeNode* m_lChild = nullptr, * m_rChild = nullptr;};CTreeNode* m_root;TSave m_tDefault;TRecord m_tRecordDef;
public:CTreeRangeLineTree(int iMinIndex, int iMaxIndex, TSave tDefault, TRecord tRecordDef) {m_tDefault = tDefault;m_tRecordDef = tRecordDef;m_root = CreateNode(iMinIndex, iMaxIndex);}void Update(int iLeftIndex, int iRightIndex, TRecord value){Update(m_root, iLeftIndex, iRightIndex, value);}TSave QueryAll() {return m_root->data;}void Query(int leftIndex, int leftRight) {Query(m_root, leftIndex, leftRight);}
protected:void Query(CTreeNode* node, int iQueryLeft, int iQueryRight) {if ((node->m_iMinIndex >= iQueryLeft) && (node->m_iMaxIndex <= iQueryRight)) {this->OnQuery(node->data, node->m_iMinIndex, node->m_iMaxIndex);return;}if (1 == node->Cnt()) {//没有子节点return;}CreateChilds(node);Fresh(node);const int mid = node->m_iMinIndex + (node->m_iMaxIndex - node->m_iMinIndex) / 2;if (mid >= iQueryLeft) {Query(node->m_lChild, iQueryLeft, iQueryRight);}if (mid + 1 <= iQueryRight) {Query(node->m_rChild, iQueryLeft, iQueryRight);}}void Update(CTreeNode* node, int iOpeLeft, int iOpeRight, TRecord value){const int& iSaveLeft = node->m_iMinIndex;const int& iSaveRight = node->m_iMaxIndex;if ((iOpeLeft <= iSaveLeft) && (iOpeRight >= iSaveRight)){this->OnUpdate(node->data, iSaveLeft, iSaveRight, value);this->OnUpdateRecord(node->record, value);return;}if (1 == node->Cnt()) {//没有子节点return;}CreateChilds(node);Fresh(node);const int mid = node->m_iMinIndex + (node->m_iMaxIndex - node->m_iMinIndex) / 2;if (mid >= iOpeLeft) {this->Update(node->m_lChild, iOpeLeft, iOpeRight, value);}if (mid + 1 <= iOpeRight) {this->Update(node->m_rChild, iOpeLeft, iOpeRight, value);}// 如果有后代,至少两个后代this->OnUpdateParent(node->data, node->m_lChild->data, node->m_rChild->data, node->m_iMinIndex, node->m_iMaxIndex);}void CreateChilds(CTreeNode* node) {if (nullptr != node->m_lChild) { return; }const int iSaveLeft = node->m_iMinIndex;const int iSaveRight = node->m_iMaxIndex;const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;node->m_lChild = CreateNode(iSaveLeft, mid);node->m_rChild = CreateNode(mid + 1, iSaveRight);}CTreeNode* CreateNode(int iMinIndex, int iMaxIndex) {CTreeNode* node = new CTreeNode;node->m_iMinIndex = iMinIndex;node->m_iMaxIndex = iMaxIndex;node->data = m_tDefault;node->record = m_tRecordDef;return node;}void Fresh(CTreeNode* node){if (m_tRecordDef == node->record){return;}CreateChilds(node);Update(node->m_lChild, node->m_lChild->m_iMinIndex, node->m_lChild->m_iMaxIndex, node->record);Update(node->m_rChild, node->m_rChild->m_iMinIndex, node->m_rChild->m_iMaxIndex, node->record);node->record = m_tRecordDef;}
};template<class TSave, class TRecord >
class CVectorRangeUpdateLineTree : public CRangUpdateLineTree<TSave, TRecord>
{
public:CVectorRangeUpdateLineTree(int iEleSize, TSave tDefault, TRecord tRecordNull) :m_iEleSize(iEleSize), m_save(iEleSize * 4, tDefault), m_record(iEleSize * 4, tRecordNull) {m_recordNull = tRecordNull;}void Update(int iLeftIndex, int iRightIndex, TRecord value){Update(1, 0, m_iEleSize - 1, iLeftIndex, iRightIndex, value);}void Query(int leftIndex, int rightIndex) {Query(1, 0, m_iEleSize - 1, leftIndex, rightIndex);}//void Init() {//	Init(1, 0, m_iEleSize - 1);//}TSave QueryAll() {return m_save[1];}void swap(CVectorRangeUpdateLineTree<TSave, TRecord>& other) {m_save.swap(other.m_save);m_record.swap(other.m_record);std::swap(m_recordNull, other.m_recordNull);assert(m_iEleSize == other.m_iEleSize);}
protected://void Init(int iNodeNO, int iSaveLeft, int iSaveRight)//{//	if (iSaveLeft == iSaveRight) {//		this->OnInit(m_save[iNodeNO], iSaveLeft);//		return;//	}//	const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;//	Init(iNodeNO * 2, iSaveLeft, mid);//	Init(iNodeNO * 2 + 1, mid + 1, iSaveRight);//	this->OnUpdateParent(m_save[iNodeNO], m_save[iNodeNO * 2], m_save[iNodeNO * 2 + 1], iSaveLeft, iSaveRight);//}void Query(int iNodeNO, int iSaveLeft, int iSaveRight, int iQueryLeft, int iQueryRight) {if ((iSaveLeft >= iQueryLeft) && (iSaveRight <= iQueryRight)) {this->OnQuery(m_save[iNodeNO], iSaveLeft, iSaveRight);return;}if (iSaveLeft == iSaveRight) {//没有子节点return;}Fresh(iNodeNO, iSaveLeft, iSaveRight);const int mid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;if (mid >= iQueryLeft) {Query(iNodeNO * 2, iSaveLeft, mid, iQueryLeft, iQueryRight);}if (mid + 1 <= iQueryRight) {Query(iNodeNO * 2 + 1, mid + 1, iSaveRight, iQueryLeft, iQueryRight);}}void Update(int iNode, int iSaveLeft, int iSaveRight, int iOpeLeft, int iOpeRight, TRecord value){if ((iOpeLeft <= iSaveLeft) && (iOpeRight >= iSaveRight)){this->OnUpdate(m_save[iNode], iSaveLeft, iSaveRight, value);this->OnUpdateRecord(m_record[iNode], value);return;}if (iSaveLeft == iSaveRight) {return;//没有子节点}Fresh(iNode, iSaveLeft, iSaveRight);const int iMid = iSaveLeft + (iSaveRight - iSaveLeft) / 2;if (iMid >= iOpeLeft){Update(iNode * 2, iSaveLeft, iMid, iOpeLeft, iOpeRight, value);}if (iMid + 1 <= iOpeRight){Update(iNode * 2 + 1, iMid + 1, iSaveRight, iOpeLeft, iOpeRight, value);}// 如果有后代,至少两个后代this->OnUpdateParent(m_save[iNode], m_save[iNode * 2], m_save[iNode * 2 + 1], iSaveLeft, iSaveRight);}void Fresh(int iNode, int iDataLeft, int iDataRight){if (m_recordNull == m_record[iNode]){return;}const int iMid = iDataLeft + (iDataRight - iDataLeft) / 2;Update(iNode * 2, iDataLeft, iMid, iDataLeft, iMid, m_record[iNode]);Update(iNode * 2 + 1, iMid + 1, iDataRight, iMid + 1, iDataRight, m_record[iNode]);m_record[iNode] = m_recordNull;}vector<TSave> m_save;vector<TRecord> m_record;TRecord m_recordNull;const int m_iEleSize;
};
class CMyLineTree : public CVectorRangeUpdateLineTree<int, int> {typedef  int TSave;typedef  int TRecord;using  CVectorRangeUpdateLineTree<int, int>::CVectorRangeUpdateLineTree;// 通过 CVectorRangeUpdateLineTree 继承virtual void OnQuery(const TSave& save, const int& iSaveLeft, const int& iSaveRight) override{}virtual void OnUpdate(TSave& save, const int& iSaveLeft, const int& iSaveRight, const TRecord& update) override{save = (iSaveRight - iSaveLeft + 1) - save;}virtual void OnUpdateParent(TSave& par, const TSave& left, const TSave& r, const int& iSaveLeft, const int& iSaveRight) override{par = left + r;}virtual void OnUpdateRecord(TRecord& old, const TRecord& newRecord) override{old = (old + newRecord) % 2;}
};
class Solution {
public:vector<long long> handleQuery(vector<int>& nums1, vector<int>& nums2, vector<vector<int>>& queries) {CMyLineTree lineTree(nums1.size(),0,0);for (int i = 0; i < nums1.size(); i++) {if (0 == nums1[i]) { continue; }lineTree.Update(i, i, 1);}vector<long long> ret;long long sum = accumulate(nums2.begin(),nums2.end(),0LL);for (const auto& v : queries) {if (1 == v[0]) {lineTree.Update(v[1], v[2], 1);}else if (2 == v[0]) {sum += (long long)v[1] * lineTree.QueryAll();}else {ret.emplace_back(sum);}}return ret;}
};

单元测试

template<class T1, class T2>
void AssertEx(const T1& t1, const T2& t2)
{Assert::AreEqual(t1, t2);
}
void AssertEx( double t1,  double t2)
{auto str = std::to_wstring(t1) + std::wstring(1,32) + std::to_wstring(t2);Assert::IsTrue(abs(t1 - t2) < 1e-5,str.c_str() );
}template<class T>
void AssertEx(const vector<T>& v1, const vector<T>& v2)
{Assert::AreEqual(v1.size(), v2.size());for (int i = 0; i < v1.size(); i++){Assert::AreEqual(v1[i], v2[i]);}
}template<class T>
void AssertV2(vector<vector<T>> vv1, vector<vector<T>> vv2)
{sort(vv1.begin(), vv1.end());sort(vv2.begin(), vv2.end());Assert::AreEqual(vv1.size(), vv2.size());for (int i = 0; i < vv1.size(); i++){AssertEx(vv1[i], vv2[i]);}
}namespace UnitTest
{vector<int> nums1, nums2;vector<vector<int>> queries;TEST_CLASS(UnitTest){public:TEST_METHOD(TestMethod00){nums1 = { 1,0,1 }, nums2 = { 0,0,0 }, queries = { {1,1,1},{2,1,0},{3,0,0} };auto res = Solution().handleQuery(nums1, nums2, queries);AssertEx(vector<long long>{3}, res);}TEST_METHOD(TestMethod01){nums1 = { 1 }, nums2 = { 5 }, queries = { {2,0,0},{3,0,0} };auto res = Solution().handleQuery(nums1, nums2, queries);AssertEx(vector<long long>{5}, res);}};
}

这篇关于【线段树】2569. 更新数组后处理求和查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1124033

相关文章

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu

MYSQL关联关系查询方式

《MYSQL关联关系查询方式》文章详细介绍了MySQL中如何使用内连接和左外连接进行表的关联查询,并展示了如何选择列和使用别名,文章还提供了一些关于查询优化的建议,并鼓励读者参考和支持脚本之家... 目录mysql关联关系查询关联关系查询这个查询做了以下几件事MySQL自关联查询总结MYSQL关联关系查询

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

查询Oracle数据库表是否被锁的实现方式

《查询Oracle数据库表是否被锁的实现方式》本文介绍了查询Oracle数据库表是否被锁的方法,包括查询锁表的会话、人员信息,根据object_id查询表名,以及根据会话ID查询和停止本地进程,同时,... 目录查询oracle数据库表是否被锁1、查询锁表的会话、人员等信息2、根据 object_id查询被

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3