Google Earth Engine:对NDVI进行惠特克平滑算法进行长时序分析

2024-08-31 10:36

本文主要是介绍Google Earth Engine:对NDVI进行惠特克平滑算法进行长时序分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简介

函数

ee.Array.identity(size)

Arguments:

Returns: Array

transpose(axis1, axis2)

Arguments:

Returns: Array

matrixMultiply(image2)

Arguments:

Returns: Image

matrixSolve(image2)

Arguments:

Returns: Image

arrayFlatten(coordinateLabels, separator)

Arguments:

Returns: Image

arrayReduce(reducer, axes, fieldAxis)

Arguments:

Returns: Image

代码

结果


简介

惠特克(GEE)平滑算法是一种用于时间序列预测的统计方法,特别适用于非线性、非平稳和非高斯的数据。该算法基于广义估计方程,通过最小化残差的平方和来拟合数据并找到最佳的平滑曲线。

GEE平滑算法的主要思想是在时间序列数据中引入一个平滑函数来描述数据的趋势和周期性变化。该平滑函数由一系列基函数的线性组合组成,其中每个基函数具有不同的频率和振幅。通过调整基函数的权重,可以得到最佳的平滑曲线,以最大程度地拟合数据。

在实际应用中,GEE平滑算法通常与其他统计方法结合使用,例如自回归移动平均模型(ARIMA)或指数平滑法。通过将GEE平滑算法与其他方法相结合,可以进一步提高时间序列的预测准确度和稳定性。

总的来说,GEE平滑算法是一种针对非线性、非平稳和非高斯数据的时间序列预测方法,通过引入一个平滑函数来描述数据的趋势和周期性变化,以最大程度地拟合数据。它在实际应用中通常与其他统计方法结合使用,以进一步提高预测的准确度和稳定性。

函数

ee.Array.identity(size)

Creates a 2D identity matrix of the given size.

创建一个给定大小的二维标识矩阵。

Arguments:

size (Integer):

The length of each axis.

Returns: Array

transpose(axis1axis2)

Transposes two dimensions of an array.

平移数组的两个维度。

Arguments:

this:array (Array):

Array to transpose.

axis1 (Integer, default: 0):

First axis to swap.

axis2 (Integer, default: 1):

Second axis to swap.

Returns: Array

matrixMultiply(image2)

Returns the matrix multiplication A * B for each matched pair of bands in image1 and image2. If either image1 or image2 has only 1 band, then it is used against all the bands in the other image. If the images have the same number of bands, but not the same names, they're used pairwise in the natural order. The output bands are named for the longer of the two inputs, or if they're equal in length, in image1's order. The type of the output pixels is the union of the input types.

返回图像 1 和图像 2 中每对匹配波段的矩阵乘法 A * B。如果图像 1 或图像 2 中只有一个波段,则该波段将与另一幅图像中的所有波段相对应。如果图像中的条带数量相同,但名称不同,则按自然顺序成对使用。输出波段以两个输入波段中较长的一个命名,如果两个输入波段长度相等,则按图像 1 的顺序命名。输出像素的类型是输入类型的组合。

Arguments:

this:image1 (Image):

The image from which the left operand bands are taken.

image2 (Image):

The image from which the right operand bands are taken.

Returns: Image

matrixSolve(image2)

Solves for x in the matrix equation A * x = B, finding a least-squares solution if A is overdetermined for each matched pair of bands in image1 and image2. If either image1 or image2 has only 1 band, then it is used against all the bands in the other image. If the images have the same number of bands, but not the same names, they're used pairwise in the natural order. The output bands are named for the longer of the two inputs, or if they're equal in length, in image1's order. The type of the output pixels is the union of the input types.

求解矩阵方程 A * x = B 中的 x,如果 A 对图像 1 和图像 2 中每对匹配的波段都是过确定的,则找到最小二乘法解。如果图像 1 或图像 2 中只有一个波段,则使用该波段与另一幅图像中的所有波段进行比对。如果图像中的波段数相同,但名称不相同,则按自然顺序成对使用。输出波段以两个输入波段中较长的一个命名,如果两个输入波段长度相等,则按图像 1 的顺序命名。输出像素的类型是输入类型的组合。

Arguments:

this:image1 (Image):

The image from which the left operand bands are taken.

image2 (Image):

The image from which the right operand bands are taken.

Returns: Image

arrayFlatten(coordinateLabels, separator)

Converts a single-band image of equal-shape multidimensional pixels to an image of scalar pixels, with one band for each element of the array.

将等形多维像素的单波段图像转换为标量像素图像,阵列中的每个元素对应一个波段。

Arguments:

this:image (Image):

Image of multidimensional pixels to flatten.

coordinateLabels (List):

Name of each position along each axis. For example, 2x2 arrays with axes meaning 'day' and 'color' could have labels like [['monday', 'tuesday'], ['red', 'green']], resulting in band names'monday_red', 'monday_green', 'tuesday_red', and 'tuesday_green'.

separator (String, default: "_"):

Separator between array labels in each band name.

Returns: Image

arrayReduce(reducer, axes, fieldAxis)

Reduces elements of each array pixel.

减少每个阵列像素的元素。

Arguments:

this:input (Image):

Input image.

reducer (Reducer):

The reducer to apply.

axes (List):

The list of array axes to reduce in each pixel. The output will have a length of 1 in all these axes.

fieldAxis (Integer, default: null):

The axis for the reducer's input and output fields. Only required if the reducer has multiple inputs or outputs.

Returns: Image

代码

//加载研究区
var geometry = /* color: #d63000 *//* displayProperties: [{"type": "rectangle"}] */ee.Geometry.Polygon([[[113.44773227683973, 38.6708907304602],[113.44773227683973, 38.64783484482313],[113.47588474266004, 38.64783484482313],[113.47588474266004, 38.6708907304602]]], null, false);// 将 qa 位图像转换为标志的辅助函数
function extractBits(image, start, end, newName) {// 计算我们需要提取的比特。var pattern = 0;for (var i = start; i <= end; i++) {pattern += Math.pow(2, i);}// 返回提取的质量保证位的单波段图像,并为该波段命名。return image.select([0], [newName]).bitwiseAnd(pattern).rightShift(start);
}// 在输入矩阵上获取指定阶次的差分矩阵的函数。将矩阵和阶次作为参数
function getDifferenceMatrix(inputMatrix, order){var rowCount = ee.Number(inputMatrix.length().get([0]));var left = inputMatrix.slice(0,0,rowCount.subtract(1));var right = inputMatrix.slice(0,1,rowCount);if (order > 1 ){return getDifferenceMatrix(left.subtract(right), order-1)}return left.subtract(right);
};// 将数组图像解包为图像和波段
// 以数组图像、图像 ID 列表和乐队名称列表为参数
function unpack(arrayImage, imageIds, bands){function iter(item, icoll){function innerIter(innerItem, innerList){return ee.List(innerList).add(ee.String(item).cat("_").cat(ee.String(innerItem)))}var temp = bands.iterate(innerIter, ee.List([]));return ee.ImageCollection(icoll).merge(ee.ImageCollection(ee.Image(arrayImage).select(temp,bands).set("id",item)))}var imgcoll  = ee.ImageCollection(imageIds.iterate(iter, ee.ImageCollection([])));return imgcoll}// 用于计算回归结果的反对数比率并转换回百分比单位的函数
function inverseLogRatio(image) {var bands = image.bandNames();var t = image.get("system:time_start");var ilrImage = ee.Image(100).divide(ee.Image(1).add(image.exp())).rename(bands);return ilrImage.set("system:time_start",t);
}function whittakerSmoothing(imageCollection, isCompositional, lambda){// 快速配置以设置默认值if (isCompositional === undefined || isCompositional !==true) isCompositional = false;if (lambda === undefined ) lambda = 10;// 程序启动  var ic = imageCollection.map(function(image){var t = image.get("system:time_start");return image.toFloat().set("system:time_start",t);});var dimension = ic.size();var identity_mat = ee.Array.identity(dimension);var difference_mat = getDifferenceMatrix(identity_mat,3);var difference_mat_transpose = difference_mat.transpose();var lamda_difference_mat = difference_mat_transpose.multiply(lambda);var res_mat = lamda_difference_mat.matrixMultiply(difference_mat);var hat_matrix = res_mat.add(identity_mat);// 备份原始数据var original = ic;// 获取原始图像属性var properties = ee.List(ic.iterate(function(image, list){return ee.List(list).add(image.toDictionary());},[]));var time = ee.List(ic.iterate(function(image, list){return ee.List(list).add(image.get("system:time_start"));},[]));// 如果数据是合成的// 计算图像在 0 到 100 之间的对比率。首先// 夹在 delta 和 100-delta 之间,其中 delta 是一个很小的正值。if (isCompositional){ic = ic.map(function(image){var t = image.get("system:time_start");var delta = 0.001;var bands = image.bandNames();image = image.clamp(delta,100-delta);image = (ee.Image.constant(100).subtract(image)).divide(image).log().rename(bands);return image.set("system:time_start",t);});}var arrayImage = original.toArray();var coeffimage = ee.Image(hat_matrix);var smoothImage = coeffimage.matrixSolve(arrayImage);var idlist = ee.List(ic.iterate(function(image, list){return ee.List(list).add(image.id());},[]));var bandlist = ee.Image(ic.first()).bandNames();var flatImage = smoothImage.arrayFlatten([idlist,bandlist]);var smoothCollection = ee.ImageCollection(unpack(flatImage, idlist, bandlist));if (isCompositional){smoothCollection = smoothCollection.map(inverseLogRatio);}// 通过添加后缀fitted获得新的乐队名称var newBandNames = bandlist.map(function(band){return ee.String(band).cat("_fitted")});// 重新命名平滑图像中的波段smoothCollection = smoothCollection.map(function(image){return ee.Image(image).rename(newBandNames)});// 一个非常笨的方法,可以flatten谷歌地球引擎生成的 ID,这样就可以将两张图片合并为图表了var dumbimg = arrayImage.arrayFlatten([idlist,bandlist]);var dumbcoll = ee.ImageCollection(unpack(dumbimg,idlist, bandlist));var outCollection = dumbcoll.combine(smoothCollection);var outCollectionProp = outCollection.iterate(function(image,list){var t = image.get("system:time_start")return ee.List(list).add(image.set(properties.get(ee.List(list).size())));},[]);var outCollectionProp = outCollection.iterate(function(image,list){return ee.List(list).add(image.set("system:time_start",time.get(ee.List(list).size())));},[]);var residue_sq = smoothImage.subtract(arrayImage).pow(ee.Image(2)).divide(dimension);var rmse_array = residue_sq.arrayReduce(ee.Reducer.sum(),[0]).pow(ee.Image(1/2));var rmseImage = rmse_array.arrayFlatten([["rmse"],bandlist]);return [ee.ImageCollection.fromImages(outCollectionProp), rmseImage];
}var ndvi =ee.ImageCollection("NOAA/VIIRS/001/VNP13A1").select('NDVI').filterDate("2019-01-01","2019-12-31");
// 去除屏蔽像素
ndvi = ndvi.map(function(img){return img.unmask(ndvi.mean())});var ndvi =  whittakerSmoothing(ndvi)[0];// 添加图表
print(ui.Chart.image.series(ndvi.select(['NDVI', 'NDVI_fitted']), geometry, ee.Reducer.mean(), 500).setSeriesNames(['NDVI', 'NDVI_fitted']).setOptions({title: 'smoothed',lineWidth: 1,pointSize: 3,
}));

结果

这篇关于Google Earth Engine:对NDVI进行惠特克平滑算法进行长时序分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123663

相关文章

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,