Carla自动驾驶仿真十:Carlaviz三维可视化平台搭建

2024-08-31 07:52

本文主要是介绍Carla自动驾驶仿真十:Carlaviz三维可视化平台搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、环境准备
      • 1、docker安装
      • 2、websocket-client安装
      • 3、carlaviz代码下载
  • 二、carlaviz使用
      • 1、打开carla客户端
      • 2、输入启动命令
      • 3、进入carlaviz
      • 4、修改manual_control.py脚本
      • 5、运行manual_control.py脚本
      • 6、运行carlaviz官方脚本(推荐)


前言

Carlaviz是一个开源的可视化工具,主要用于Carla三维场景、传感器数据以及自车数据的可视化,能够作为观测平台使用,本文主要介绍Carlaviz的安装以及基本使用;


一、环境准备

1、docker安装

1)根据所属环境下载对应的docker,然后直接安装即可

点击进入docker官网下载

2、websocket-client安装

1)进入终端输入:pip3 install websocket_client

3、carlaviz代码下载

carlaviz github链接

1)打开终端输入 docker pull mjxu96/carlaviz:0.9.14,请下载与自己carla版本一致的carlaviz,只需修改后面的版本号,如下载0.9.15版本的carlaviz:

在这里插入图片描述

二、carlaviz使用

1、打开carla客户端

在这里插入图片描述

2、输入启动命令

1)windows
终端输入:docker run -it -p 8080-8081:8080-8081 mjxu96/carlaviz:0.9.14 --simulator_host host.docker.internal --simulator_port 2000,注意carla的版本号一定要对上;

2)linux
终端输入:docker run -it --network="host" mjxu96/carlaviz:0.9.14 --simulator_host localhost --simulator_port 2000,注意carla的版本号一定要对上‘

windows输入启动命令后结果:
在这里插入图片描述

3、进入carlaviz

1)打开浏览器输入http://localhost:8080/,或者从docker软件进入,进入carlaviz如下图所示,能够正确加载到路网相关信息,此时没有ego信息以及摄像头画面是正常的,是因为需要启动python脚本生成车辆以及摄像头;

在这里插入图片描述

4、修改manual_control.py脚本

1、启动前需要将manual_control.py中主车的名称改成ego
在这里插入图片描述

5、运行manual_control.py脚本

1)运行脚本后正确接收到主车信息,摄像头画面等信息;

在这里插入图片描述

6、运行carlaviz官方脚本(推荐)

1)我们也可以运行官方脚本,有激光雷达点云信息;

import carla
import random
import time
# from carla_painter import CarlaPainterdef do_something(data):passdef main():try:# initialize one painter# painter = CarlaPainter('localhost', 8089)client = carla.Client('localhost', 2000)client.set_timeout(10.0)world = client.get_world()for blue_print in world.get_blueprint_library():if blue_print.id.startswith("sensor"):print(blue_print)# set synchronous modeprevious_settings = world.get_settings()world.apply_settings(carla.WorldSettings(synchronous_mode=True,fixed_delta_seconds=1.0 / 30.0))# randomly spawn an ego vehicle and several other vehiclesspawn_points = world.get_map().get_spawn_points()blueprints_vehicles = world.get_blueprint_library().filter("vehicle.*")ego_transform = spawn_points[random.randint(0, len(spawn_points) - 1)]other_vehicles_transforms = []for _ in range(3):other_vehicles_transforms.append(spawn_points[random.randint(0, len(spawn_points) - 1)])blueprints_vehicles = [x for x in blueprints_vehicles if int(x.get_attribute('number_of_wheels')) == 4]# set ego vehicle's role name to let CarlaViz know this vehicle is the ego vehicleblueprints_vehicles[0].set_attribute('role_name', 'ego') # or set to 'hero'batch = [carla.command.SpawnActor(blueprints_vehicles[0], ego_transform).then(carla.command.SetAutopilot(carla.command.FutureActor, True))]results = client.apply_batch_sync(batch, True)if not results[0].error:ego_vehicle = world.get_actor(results[0].actor_id)else:print('spawn ego error, exit')ego_vehicle = Nonereturnother_vehicles = []batch = []for i in range(3):batch.append(carla.command.SpawnActor(blueprints_vehicles[i + 1], other_vehicles_transforms[i]).then(carla.command.SetAutopilot(carla.command.FutureActor, True)))# set autopilot for all these actorsego_vehicle.set_autopilot(True)results = client.apply_batch_sync(batch, True)for result in results:if not result.error:other_vehicles.append(result.actor_id)# attach a camera and a lidar to the ego vehiclecamera = None# blueprint_camera = world.get_blueprint_library().find('sensor.camera.rgb')blueprint_camera = world.get_blueprint_library().find('sensor.camera.instance_segmentation')# blueprint_camera = world.get_blueprint_library().find('sensor.camera.depth')blueprint_camera.set_attribute('image_size_x', '640')blueprint_camera.set_attribute('image_size_y', '480')blueprint_camera.set_attribute('fov', '110')blueprint_camera.set_attribute('sensor_tick', '0.1')transform_camera = carla.Transform(carla.Location(y=+3.0, z=5.0))camera = world.spawn_actor(blueprint_camera, transform_camera, attach_to=ego_vehicle)camera.listen(lambda data: do_something(data))lidar = None# blueprint_lidar = world.get_blueprint_library().find('sensor.lidar.ray_cast')blueprint_lidar = world.get_blueprint_library().find('sensor.lidar.ray_cast_semantic')blueprint_lidar.set_attribute('range', '30')blueprint_lidar.set_attribute('rotation_frequency', '10')blueprint_lidar.set_attribute('channels', '32')blueprint_lidar.set_attribute('lower_fov', '-30')blueprint_lidar.set_attribute('upper_fov', '30')blueprint_lidar.set_attribute('points_per_second', '56000')transform_lidar = carla.Transform(carla.Location(x=0.0, z=5.0))lidar = world.spawn_actor(blueprint_lidar, transform_lidar, attach_to=ego_vehicle)lidar.listen(lambda data: do_something(data))# tick to generate these actors in the game worldworld.tick()# save vehicles' trajectories to draw in the frontendtrajectories = [[]]while (True):world.tick()ego_location = ego_vehicle.get_location()trajectories[0].append([ego_location.x, ego_location.y, ego_location.z])# draw trajectories# painter.draw_polylines(trajectories)# draw ego vehicle's velocity just above the ego vehicleego_velocity = ego_vehicle.get_velocity()velocity_str = "{:.2f}, ".format(ego_velocity.x) + "{:.2f}".format(ego_velocity.y) \+ ", {:.2f}".format(ego_velocity.z)# painter.draw_texts([velocity_str],#             [[ego_location.x, ego_location.y, ego_location.z + 10.0]], size=20)time.sleep(0.05)finally:if previous_settings is not None:world.apply_settings(previous_settings)if lidar is not None:lidar.stop()lidar.destroy()if camera is not None:camera.stop()camera.destroy()if ego_vehicle is not None:ego_vehicle.destroy()if other_vehicles is not None:client.apply_batch([carla.command.DestroyActor(x) for x in other_vehicles])if __name__ == "__main__":

在这里插入图片描述

综上,完成carlaviz的安装及使用,确实是一个较只管的观测平台,如果能在基础上做控制的开发那就完美了。

这篇关于Carla自动驾驶仿真十:Carlaviz三维可视化平台搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123318

相关文章

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

如何使用Haporxy搭建Web群集

《如何使用Haporxy搭建Web群集》Haproxy是目前比较流行的一种群集调度工具,同类群集调度工具有很多如LVS和Nginx,本案例介绍使用Haproxy及Nginx搭建一套Web群集,感兴趣的... 目录一、案例分析1.案例概述2.案例前置知识点2.1 HTTP请求2.2 负载均衡常用调度算法 2.

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.