数学基础 -- 线性代数之矩阵因式分解

2024-08-31 00:28

本文主要是介绍数学基础 -- 线性代数之矩阵因式分解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩阵因式分解

矩阵因式分解是线性代数中的重要工具,能够将复杂的矩阵运算简化。不同的分解方法适用于不同类型的矩阵,本文将详细介绍常见的矩阵因式分解方法及其适用的矩阵特点。

1. LU分解(LU Decomposition)

定义

LU分解将一个方阵 A A A 分解为两个矩阵的乘积:一个下三角矩阵 L L L 和一个上三角矩阵 U U U
A = L U A = LU A=LU

适用矩阵

  • 方阵:仅适用于 n × n n \times n n×n 的方阵。
  • 要求:矩阵 A A A 的行列式非零。如果行列式为零,可能需要进行行列交换。

应用

  • 求解线性方程组
  • 计算矩阵行列式
  • 计算矩阵逆

2. QR分解(QR Decomposition)

定义

QR分解将一个矩阵 A A A 分解为一个正交矩阵 Q Q Q 和一个上三角矩阵 R R R
A = Q R A = QR A=QR

适用矩阵

  • 任意矩阵:适用于 m × n m \times n m×n 的任意矩阵(方阵或非方阵)。
  • 要求:无特别要求,矩阵 A A A 的形状可以是矩形或方形。

应用

  • 线性最小二乘问题
  • 特征值计算
  • 稳定的数值计算

3. 特征值分解(Eigenvalue Decomposition)

定义

特征值分解将一个方阵 A A A 分解为:
A = P D P − 1 A = PDP^{-1} A=PDP1
其中, P P P 是特征向量矩阵, D D D 是特征值构成的对角矩阵。

适用矩阵

  • 方阵:仅适用于 n × n n \times n n×n 的方阵。
  • 要求:矩阵 A A A 必须有足够的线性无关特征向量。

应用

  • 系统稳定性分析
  • 振动分析
  • 主成分分析(PCA)

4. 奇异值分解(SVD,Singular Value Decomposition)

定义

SVD将任意矩阵 A A A 分解为三个矩阵的乘积:
A = U Σ V T A = U\Sigma V^T A=UΣVT
其中, U U U V V V 是正交矩阵, Σ \Sigma Σ 是对角矩阵。

适用矩阵

  • 任意矩阵:适用于 m × n m \times n m×n 的任意矩阵,方阵或非方阵均可。
  • 要求:无特别要求,适用于任意形状的矩阵。

应用

  • 数据压缩与降维
  • 图像压缩
  • 矩阵近似

5. Cholesky分解(Cholesky Decomposition)

定义

Cholesky分解将一个对称正定矩阵 A A A 分解为:
A = L L T A = LL^T A=LLT
其中, L L L 是下三角矩阵。

适用矩阵

  • 对称正定方阵:仅适用于 n × n n \times n n×n 的对称正定矩阵。
  • 要求:矩阵 A A A 必须是对称且正定的。

应用

  • 线性方程组求解
  • 卡尔曼滤波中的协方差矩阵分解

6. 非负矩阵分解(NMF,Non-negative Matrix Factorization)

定义

NMF将一个非负矩阵 A A A 分解为两个非负矩阵 W W W H H H
A ≈ W H A \approx WH AWH

适用矩阵

  • 非负矩阵:适用于 m × n m \times n m×n 的非负矩阵。
  • 要求:矩阵 A A A 的所有元素必须为非负数。

应用

  • 数据挖掘与模式识别
  • 文本分析与推荐系统
  • 特征提取与降维

总结

方阵分解

  • LU分解特征值分解Cholesky分解 仅适用于方阵。

任意矩阵分解

  • QR分解SVDNMF 适用于任意形状的矩阵。

特殊矩阵要求

  • Cholesky分解 适用于对称正定矩阵。
  • NMF 要求矩阵的元素非负。

通过选择适合的分解方法,可以有效处理不同类型的矩阵问题,简化计算并提高效率。

这篇关于数学基础 -- 线性代数之矩阵因式分解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122364

相关文章

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2