【通俗理解】深度学习特征提取——Attention机制的数学原理与应用

本文主要是介绍【通俗理解】深度学习特征提取——Attention机制的数学原理与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【通俗理解】深度学习特征提取——Attention机制的数学原理与应用

关键词提炼

#深度学习 #特征提取 #Attention机制 #CNN #Transformer #关联特征 #MLP #拟合处理

在这里插入图片描述

第一节:Attention机制的类比与核心概念

1.1 Attention机制的类比

Attention机制可以被视为一个“特征筛选器”,它像是一个精细的筛子,在众多的特征中筛选出那些具有关联性的重要特征,然后再利用MLP(多层感知机)对这些特征进行进一步的处理和拟合,最终得到特征与标签之间的关系。

1.2 相似公式比对

  • 线性加权 y = ∑ i = 1 n w i x i y = \sum_{i=1}^{n} w_i x_i y=i=1nwixi,描述了一种简单的线性加权过程,适用于直接且不变的情况。
  • Attention机制 Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V,则是一个更为复杂的机制,它通过对查询(Q)、键(K)和值(V)的操作,实现了对特征的关联筛选和加权

第二节:Attention机制的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
查询(Q)代表当前需要处理的特征或信息的查询向量。像是你在图书馆中查找资料时,你手中的查询单。
键(K)代表所有可能的特征或信息的键向量,与查询向量进行匹配。像是图书馆中所有书籍的标题和索引,等待你的查询。
值(V)代表所有可能的特征或信息的值向量,根据与查询向量的匹配程度进行加权。像是图书馆中所有书籍的内容,等待你根据标题和索引去获取。
softmax函数用于将匹配程度转化为概率分布,确保加权和的稳定性。像是将你的查询结果按照相关性进行排序,最相关的排在最前面。

2.2 优势与劣势

  • 优势

    • 动态加权:能够根据查询和键的匹配程度动态地调整特征的权重。
    • 关联筛选:能够筛选出与查询最相关的特征,提高特征的有效性和准确性。
  • 劣势

    • 计算复杂度:对于大量的特征和复杂的模型,Attention机制的计算复杂度可能较高。
    • 可解释性:相比于简单的线性加权,Attention机制的可解释性可能较差。

2.3 与特征提取的类比

Attention机制在特征提取中扮演着“放大镜”的角色,它能够放大那些与任务最相关的特征,就像放大镜能够放大物体上的细节一样,为深度学习模型提供了更加精细和有效的特征表示。
在这里插入图片描述

第三节:公式探索与推演运算

3.1 Attention机制的基本形式

Attention机制的基本形式为:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

其中, Q Q Q K K K V V V分别代表查询、键和值向量, d k d_k dk是键向量的维度,用于缩放点积的结果,保持数值的稳定性。

3.2 具体实例与推演

假设我们有以下查询、键和值向量:

Q = [ 1 0 ] , K = [ 1 2 0 1 ] , V = [ 2 3 ] Q = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, K = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, V = \begin{bmatrix} 2 \\ 3 \end{bmatrix} Q=[10],K=[1021],V=[23]

我们可以计算Attention机制的输出:

Q K T = [ 1 0 ] [ 1 0 2 1 ] = [ 1 0 0 0 ] QK^T = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} QKT=[10][1201]=[1000]

softmax ( Q K T d k ) = softmax ( [ 1 0 0 0 ] ) = [ 1 0 0 0 ] \text{softmax}(\frac{QK^T}{\sqrt{d_k}}) = \text{softmax}(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} softmax(dk QKT)=softmax([1000])=[1000]

Attention ( Q , K , V ) = [ 1 0 0 0 ] [ 2 3 ] = [ 2 0 ] \text{Attention}(Q, K, V) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} Attention(Q,K,V)=[1000][23]=[20]

通过这个例子,我们可以看到Attention机制如何根据查询和键的匹配程度对值向量进行加权。

第四节:相似公式比对

  • 点积Attention加性Attention

    • 共同点:都用于计算查询和键之间的匹配程度。
    • 不同点:点积Attention使用点积操作来计算匹配程度,而加性Attention则使用一个前馈神经网络来计算匹配程度。
  • 自注意力(Self-Attention)交叉注意力(Cross-Attention)

    • 相似点:都使用Attention机制来计算特征之间的关联。
    • 差异:自注意力是在同一组特征内部计算关联,而交叉注意力则是在两组不同的特征之间计算关联。

第五节:核心代码与可视化

这段代码使用PyTorch框架实现了简单的Attention机制,并生成了Attention权重的可视化图像。

import torch
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# Define simple Attention mechanism
def attention(Q, K, V):d_k = K.size()[-1]scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))attention_weights = torch.softmax(scores, dim=-1)output = torch.matmul(attention_weights, V)return output, attention_weights# Example data
Q = torch.tensor([[1.0, 0.0]], dtype=torch.float32)
K = torch.tensor([[1.0, 2.0], [0.0, 1.0]], dtype=torch.float32)
V = torch.tensor([[2.0], [3.0]], dtype=torch.float32)# Compute Attention
output, attention_weights = attention(Q, K, V)# Visualize Attention weights
sns.set_theme(style="whitegrid")
plt.bar(['Feature 1', 'Feature 2'], attention_weights.numpy()[0])
plt.xlabel('Features')
plt.ylabel('Attention Weights')
plt.title('Attention Weight Visualization')
plt.show()# Print output and attention weights
print("Output of Attention mechanism:", output.numpy())
print("Attention weights:", attention_weights.numpy())

这段代码首先定义了一个简单的Attention函数,然后使用示例数据计算了Attention的输出和权重,并将权重进行了可视化。通过可视化,我们可以直观地看到不同特征之间的Attention权重分配。

引用:通俗理解的核心

Attention机制就像是一个精细的筛子,在深度学习模型中筛选出那些最具有关联性的特征,然后再利用MLP对这些特征进行进一步的处理和拟合,从而得到特征与标签之间的关系。

参考文献

  • “Attention Is All You Need” by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin (2017).
  • “Neural Machine Translation by Jointly Learning to Align and Translate” by Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio (2014).

这篇关于【通俗理解】深度学习特征提取——Attention机制的数学原理与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118538

相关文章

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解