【通俗理解】深度学习特征提取——Attention机制的数学原理与应用

本文主要是介绍【通俗理解】深度学习特征提取——Attention机制的数学原理与应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【通俗理解】深度学习特征提取——Attention机制的数学原理与应用

关键词提炼

#深度学习 #特征提取 #Attention机制 #CNN #Transformer #关联特征 #MLP #拟合处理

在这里插入图片描述

第一节:Attention机制的类比与核心概念

1.1 Attention机制的类比

Attention机制可以被视为一个“特征筛选器”,它像是一个精细的筛子,在众多的特征中筛选出那些具有关联性的重要特征,然后再利用MLP(多层感知机)对这些特征进行进一步的处理和拟合,最终得到特征与标签之间的关系。

1.2 相似公式比对

  • 线性加权 y = ∑ i = 1 n w i x i y = \sum_{i=1}^{n} w_i x_i y=i=1nwixi,描述了一种简单的线性加权过程,适用于直接且不变的情况。
  • Attention机制 Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V,则是一个更为复杂的机制,它通过对查询(Q)、键(K)和值(V)的操作,实现了对特征的关联筛选和加权

第二节:Attention机制的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
查询(Q)代表当前需要处理的特征或信息的查询向量。像是你在图书馆中查找资料时,你手中的查询单。
键(K)代表所有可能的特征或信息的键向量,与查询向量进行匹配。像是图书馆中所有书籍的标题和索引,等待你的查询。
值(V)代表所有可能的特征或信息的值向量,根据与查询向量的匹配程度进行加权。像是图书馆中所有书籍的内容,等待你根据标题和索引去获取。
softmax函数用于将匹配程度转化为概率分布,确保加权和的稳定性。像是将你的查询结果按照相关性进行排序,最相关的排在最前面。

2.2 优势与劣势

  • 优势

    • 动态加权:能够根据查询和键的匹配程度动态地调整特征的权重。
    • 关联筛选:能够筛选出与查询最相关的特征,提高特征的有效性和准确性。
  • 劣势

    • 计算复杂度:对于大量的特征和复杂的模型,Attention机制的计算复杂度可能较高。
    • 可解释性:相比于简单的线性加权,Attention机制的可解释性可能较差。

2.3 与特征提取的类比

Attention机制在特征提取中扮演着“放大镜”的角色,它能够放大那些与任务最相关的特征,就像放大镜能够放大物体上的细节一样,为深度学习模型提供了更加精细和有效的特征表示。
在这里插入图片描述

第三节:公式探索与推演运算

3.1 Attention机制的基本形式

Attention机制的基本形式为:

Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V

其中, Q Q Q K K K V V V分别代表查询、键和值向量, d k d_k dk是键向量的维度,用于缩放点积的结果,保持数值的稳定性。

3.2 具体实例与推演

假设我们有以下查询、键和值向量:

Q = [ 1 0 ] , K = [ 1 2 0 1 ] , V = [ 2 3 ] Q = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, K = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, V = \begin{bmatrix} 2 \\ 3 \end{bmatrix} Q=[10],K=[1021],V=[23]

我们可以计算Attention机制的输出:

Q K T = [ 1 0 ] [ 1 0 2 1 ] = [ 1 0 0 0 ] QK^T = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} QKT=[10][1201]=[1000]

softmax ( Q K T d k ) = softmax ( [ 1 0 0 0 ] ) = [ 1 0 0 0 ] \text{softmax}(\frac{QK^T}{\sqrt{d_k}}) = \text{softmax}(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} softmax(dk QKT)=softmax([1000])=[1000]

Attention ( Q , K , V ) = [ 1 0 0 0 ] [ 2 3 ] = [ 2 0 ] \text{Attention}(Q, K, V) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} Attention(Q,K,V)=[1000][23]=[20]

通过这个例子,我们可以看到Attention机制如何根据查询和键的匹配程度对值向量进行加权。

第四节:相似公式比对

  • 点积Attention加性Attention

    • 共同点:都用于计算查询和键之间的匹配程度。
    • 不同点:点积Attention使用点积操作来计算匹配程度,而加性Attention则使用一个前馈神经网络来计算匹配程度。
  • 自注意力(Self-Attention)交叉注意力(Cross-Attention)

    • 相似点:都使用Attention机制来计算特征之间的关联。
    • 差异:自注意力是在同一组特征内部计算关联,而交叉注意力则是在两组不同的特征之间计算关联。

第五节:核心代码与可视化

这段代码使用PyTorch框架实现了简单的Attention机制,并生成了Attention权重的可视化图像。

import torch
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns# Define simple Attention mechanism
def attention(Q, K, V):d_k = K.size()[-1]scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))attention_weights = torch.softmax(scores, dim=-1)output = torch.matmul(attention_weights, V)return output, attention_weights# Example data
Q = torch.tensor([[1.0, 0.0]], dtype=torch.float32)
K = torch.tensor([[1.0, 2.0], [0.0, 1.0]], dtype=torch.float32)
V = torch.tensor([[2.0], [3.0]], dtype=torch.float32)# Compute Attention
output, attention_weights = attention(Q, K, V)# Visualize Attention weights
sns.set_theme(style="whitegrid")
plt.bar(['Feature 1', 'Feature 2'], attention_weights.numpy()[0])
plt.xlabel('Features')
plt.ylabel('Attention Weights')
plt.title('Attention Weight Visualization')
plt.show()# Print output and attention weights
print("Output of Attention mechanism:", output.numpy())
print("Attention weights:", attention_weights.numpy())

这段代码首先定义了一个简单的Attention函数,然后使用示例数据计算了Attention的输出和权重,并将权重进行了可视化。通过可视化,我们可以直观地看到不同特征之间的Attention权重分配。

引用:通俗理解的核心

Attention机制就像是一个精细的筛子,在深度学习模型中筛选出那些最具有关联性的特征,然后再利用MLP对这些特征进行进一步的处理和拟合,从而得到特征与标签之间的关系。

参考文献

  • “Attention Is All You Need” by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin (2017).
  • “Neural Machine Translation by Jointly Learning to Align and Translate” by Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio (2014).

这篇关于【通俗理解】深度学习特征提取——Attention机制的数学原理与应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118538

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或