时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt

2024-08-29 15:12

本文主要是介绍时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天给大家介绍一篇最新的大模型+时间序列预测工作,由康涅狄格大学发表,提出了一种将时间序列在隐空间和NLP大模型对齐,并利用隐空间prompt提升时间序列预测效果的方法。

图片

论文标题:S2IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting

下载地址:https://arxiv.org/pdf/2403.05798v1.pdf

1

问题背景

大模型在时间序列上的应用越来越多,主要分为两类:第一类使用各类时间序列数据训练一个时间序列领域自己的大模型;第二类直接使用NLP领域训练好的文本大模型应用到时间序列中。由于时间序列不同于图像、文本,不同数据集的输入格式不同、分布不同,且存在distribution shift等问题,导致使用所有时间序列数据训练统一的模型比较困难。因此,越来越多的工作开始尝试如何直接使用NLP大模型解决时间序列相关问题。

本文的聚焦点也在第二种方法,即使用NLP大模型解决时间序列问题。现有的方法很多采用对时间序列的描述作为prompt,但是这种信息并不是所有时间序列数据集都有。并且现有的基于patch的时间序列数据处理方法,也无法完全保存时间序列数据本身的所有信息。

基于上述问题,这篇文章提出了一种新的建模方法,核心建模思路,一方面将时间序列通过tokenize处理后映射成embedding,另一方面将这些时间序列空间的表征对齐到大模型中的word embedding上。通过这种方式,让时间序列的预测过程中,可以找到对齐的word embedding相关的信息作为prompt,提升预测效果。

图片

2

实现方法

下面从数据处理、隐空间对齐、模型细节等3个方面介绍一下这篇工作的实现方法。

数据处理:由于时间序列的distribution shift等问题,本文对输入序列做了一步趋势项季节项分解。每个分解后的时间序列,都单独做标准化,然后分割成有重叠的patch。每一组patch对应趋势项patch、季节项patch、残差patch,将这3组patch拼接到一起,输入到MLP中,得到每组patch的基础embedding表征。

隐空间对齐:这是本文中最核心的一步。Prompt的设计对大模型的效果影响很大,而时间序列的prompt又难以设计。因此本文提出,将时间序列的patch表征和大模型的word embedding在隐空间对齐,然后检索出topK的word embedding,作为隐式的prompt。具体做法为,使用上一步生成的patch embedding,和语言模型中的word embedding计算余弦相似度,选择topK的word embedding,再将这些word embedding作为prompt,拼接到时间序列patch embedding的前方。由于大模型word embedding大多,为了减少计算量,先对word embedding做了一步映射,映射到数量很少的聚类中心上。

模型细节:在模型细节上,使用GPT2作为语言模型部分,除了position embedding和layer normalization部分的参数外,其余的都冻结住。优化目标除了MSE外,还引入patch embedding和检索出的topK cluster embedding的相似度作为约束,要求二者之间的距离越小越好。最终的预测结果,也是

图片

3

实验效果

文中对比了和一些时间序列大模型、iTransformer、PatchTST等SOTA模型的效果,在大部分数据集的不同时间窗口的预测中都取得了比较好的效果提升。

图片

同时,文中也通过t-SNE可视化分析了embedding,从图中可以看出,时间序列的embedding在对齐之前并没有明显的类簇现象,而通过prompt生成的embedding有明显的类簇变化,说明本文提出的方法有效的利用文本和时间序列的空间对齐,以及相应的prompt,提升时间序列表征的质量。

图片

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

这篇关于时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118219

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型