时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt

2024-08-29 15:12

本文主要是介绍时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天给大家介绍一篇最新的大模型+时间序列预测工作,由康涅狄格大学发表,提出了一种将时间序列在隐空间和NLP大模型对齐,并利用隐空间prompt提升时间序列预测效果的方法。

图片

论文标题:S2IP-LLM: Semantic Space Informed Prompt Learning with LLM for Time Series Forecasting

下载地址:https://arxiv.org/pdf/2403.05798v1.pdf

1

问题背景

大模型在时间序列上的应用越来越多,主要分为两类:第一类使用各类时间序列数据训练一个时间序列领域自己的大模型;第二类直接使用NLP领域训练好的文本大模型应用到时间序列中。由于时间序列不同于图像、文本,不同数据集的输入格式不同、分布不同,且存在distribution shift等问题,导致使用所有时间序列数据训练统一的模型比较困难。因此,越来越多的工作开始尝试如何直接使用NLP大模型解决时间序列相关问题。

本文的聚焦点也在第二种方法,即使用NLP大模型解决时间序列问题。现有的方法很多采用对时间序列的描述作为prompt,但是这种信息并不是所有时间序列数据集都有。并且现有的基于patch的时间序列数据处理方法,也无法完全保存时间序列数据本身的所有信息。

基于上述问题,这篇文章提出了一种新的建模方法,核心建模思路,一方面将时间序列通过tokenize处理后映射成embedding,另一方面将这些时间序列空间的表征对齐到大模型中的word embedding上。通过这种方式,让时间序列的预测过程中,可以找到对齐的word embedding相关的信息作为prompt,提升预测效果。

图片

2

实现方法

下面从数据处理、隐空间对齐、模型细节等3个方面介绍一下这篇工作的实现方法。

数据处理:由于时间序列的distribution shift等问题,本文对输入序列做了一步趋势项季节项分解。每个分解后的时间序列,都单独做标准化,然后分割成有重叠的patch。每一组patch对应趋势项patch、季节项patch、残差patch,将这3组patch拼接到一起,输入到MLP中,得到每组patch的基础embedding表征。

隐空间对齐:这是本文中最核心的一步。Prompt的设计对大模型的效果影响很大,而时间序列的prompt又难以设计。因此本文提出,将时间序列的patch表征和大模型的word embedding在隐空间对齐,然后检索出topK的word embedding,作为隐式的prompt。具体做法为,使用上一步生成的patch embedding,和语言模型中的word embedding计算余弦相似度,选择topK的word embedding,再将这些word embedding作为prompt,拼接到时间序列patch embedding的前方。由于大模型word embedding大多,为了减少计算量,先对word embedding做了一步映射,映射到数量很少的聚类中心上。

模型细节:在模型细节上,使用GPT2作为语言模型部分,除了position embedding和layer normalization部分的参数外,其余的都冻结住。优化目标除了MSE外,还引入patch embedding和检索出的topK cluster embedding的相似度作为约束,要求二者之间的距离越小越好。最终的预测结果,也是

图片

3

实验效果

文中对比了和一些时间序列大模型、iTransformer、PatchTST等SOTA模型的效果,在大部分数据集的不同时间窗口的预测中都取得了比较好的效果提升。

图片

同时,文中也通过t-SNE可视化分析了embedding,从图中可以看出,时间序列的embedding在对齐之前并没有明显的类簇现象,而通过prompt生成的embedding有明显的类簇变化,说明本文提出的方法有效的利用文本和时间序列的空间对齐,以及相应的prompt,提升时间序列表征的质量。

图片

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

这篇关于时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118219

相关文章

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法

《golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法》:本文主要介绍golang获取当前时间、时间戳和时间字符串及它们之间的相互转换,本文通过实例代码给大家介绍的非常详细,感兴趣... 目录1、获取当前时间2、获取当前时间戳3、获取当前时间的字符串格式4、它们之间的相互转化上篇文章给大家介

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n