AI基础 -- 练手之预测耗时方案

2024-08-29 13:36

本文主要是介绍AI基础 -- 练手之预测耗时方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

预测耗时的方案

1. 初始化权重

计算初始权重 w w w
w = a 2 − a 1 1 w = \frac{a2 - a1}{1} w=1a2a1

2. 预测值

使用权重和实际值 a 2 a2 a2 来计算预测值 y 3 y3 y3
y 3 = w ⋅ 1 + a 2 y3 = w \cdot 1 + a2 y3=w1+a2

3. 损失函数

计算预测值 y 3 y3 y3 与实际值 a 3 a3 a3 之间的损失:

常见的损失函数为均方误差(MSE),即:
MSE = ( y 3 − a 3 ) 2 \text{MSE} = (y3 - a3)^2 MSE=(y3a3)2

4. 更新权重

4.1 损失函数对权重的偏导数

首先,对损失函数 MSE \text{MSE} MSE 关于权重 w w w 的偏导数进行求解:

MSE = ( y 3 − a 3 ) 2 \text{MSE} = (y3 - a3)^2 MSE=(y3a3)2

计算 y 3 y3 y3 w w w 的导数:

y 3 = w ⋅ 1 + a 2 y3 = w \cdot 1 + a2 y3=w1+a2

∂ y 3 ∂ w = 1 \frac{\partial y3}{\partial w} = 1 wy3=1

使用链式法则计算均方误差损失函数对权重的偏导数:

∂ MSE ∂ w = 2 ⋅ ( y 3 − a 3 ) ⋅ ∂ y 3 ∂ w \frac{\partial \text{MSE}}{\partial w} = 2 \cdot (y3 - a3) \cdot \frac{\partial y3}{\partial w} wMSE=2(y3a3)wy3

代入 ∂ y 3 ∂ w = 1 \frac{\partial y3}{\partial w} = 1 wy3=1

∂ MSE ∂ w = 2 ⋅ ( y 3 − a 3 ) ⋅ 1 \frac{\partial \text{MSE}}{\partial w} = 2 \cdot (y3 - a3) \cdot 1 wMSE=2(y3a3)1

∂ MSE ∂ w = 2 ⋅ ( y 3 − a 3 ) \frac{\partial \text{MSE}}{\partial w} = 2 \cdot (y3 - a3) wMSE=2(y3a3)

4.2 更新权重

使用梯度下降法更新权重 w w w

w = w − η ⋅ ∂ MSE ∂ w w = w - \eta \cdot \frac{\partial \text{MSE}}{\partial w} w=wηwMSE

代入偏导数:

w = w − η ⋅ ( 2 ⋅ ( y 3 − a 3 ) ) w = w - \eta \cdot (2 \cdot (y3 - a3)) w=wη(2(y3a3))

其中 η \eta η 是学习率。

4.3 学习率的选取

学习率 η \eta η 是控制每次权重更新幅度的超参数。选择合适的学习率非常重要:

  • 过小的学习率:收敛速度慢,可能导致训练时间过长。
  • 过大的学习率:可能导致训练不稳定,甚至发散。

选择学习率的一些建议:

  • 实验法:从一个较小的值开始(如 0.01 或 0.001),然后逐步增加,观察损失函数的变化。
  • 学习率调度:可以使用学习率衰减策略,在训练过程中逐渐减小学习率,以提高训练稳定性和收敛效果。

4.4 评估学习效果

学习过程完成的标志包括:

  • 损失函数收敛:损失函数值趋于稳定,变化幅度变小。可以设置一个阈值(如损失值变化小于 0.001)来判断收敛。
  • 预测精度:预测值与实际值的差异变小。可以使用均方误差(MSE)或其他评价指标来评估预测精度。
  • 验证集表现:如果使用了验证集,则验证集上的损失函数值趋于稳定,且不再显著下降,说明模型的学习效果良好。

这篇关于AI基础 -- 练手之预测耗时方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118006

相关文章

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统