GAMES202——作业1 实时阴影(ShadowMap,PCF,PCSS)

2024-08-28 22:12

本文主要是介绍GAMES202——作业1 实时阴影(ShadowMap,PCF,PCSS),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

任务

        ShadowMap

        PCF

        PCSS

实现 

       ShadowMap

        useShadowMap      

        PCF

        findBlocker

        PCSS

结果


任务

        ShadowMap
        1.在 ShadowMaterial.js 中需要向 Shader 传递正确的 uLightMVP 矩阵,该矩阵参与了第一步从光源处渲染场景从而构造ShadowMap 的过程。 你需要完成 DirectionalLight 中的CalcLightMVP(translate, scale) 函数,它会在 ShadowMaterial 中被调用,并将返回光源处的 MVP 矩阵绑定从而完成参数传递过程。
        2.需要完善 phongFragment.glsl 中的 useShadowMap(sampler2D shadowMap,vec4 shadowCoord) 函数。该函数负责查询当前着色点在 ShadowMap 上记录的深度值,并与转换到 light space 的深度值比较后返回 visibility 项(请注意,使用的查询坐标需要先转换到 NDC 标准空间 [0,1])。
        PCF
1.需要完善 phongFragment.glsl 中的 PCF(sampler2D shadowMap, vec4 shadowCoord, float filterSize) 函数。使用作业框架提供的圆盘滤波核,框架中提供了泊松圆盘采样和均匀圆盘采样
两种采样函数。
        PCSS

        1.需要完善 phongFragment.glsl 中的 findBlocker(sampler2D shadowMap, vec2 uv, float zReceiver)。findBlocker 函数中需要完成对遮挡物平均深度的计算。

        2.完善PCSS(sampler2D shadowMap, vec4 shadowCoord) 函数。

        

实现 

       ShadowMap

        使用shadow map实现硬阴影,需要实现经典的 Two Pass Shadow Map 方法,第一次先以光源为视点位置,将光源能看见的所有物体进行光栅化,并将以深度值进行绘制的结果保存到帧缓冲区,帧缓冲区的内容写入纹理。第二次绘制,根据纹理和一个将世界坐标下的点转化到以光源为视点的坐标系的矩阵,判断是否被遮挡,从而实现硬阴影。

        

        第一个任务是求世界坐标转化为光源坐标的矩阵。

        在这里,采用glMatrix库的相关API。

        以光源为视点,计算方法就是刚开始学图形学的时候学的MVP矩阵。对于模型矩阵modelMatrix,该函数传入了两个向量,一个是位移translate一个是缩放scale,使用这两个向量,计算出模型矩阵。对于视图矩阵,直接用该类自带的光源属性的值传入API得到。对于投影矩阵,使用正交投影,因为能够方便判断深度值。zNear值最好不要设置为0,因为zNear为0在后面的PCSS中会带来不必要的麻烦。

//DirectionalLight.jsCalcLightMVP(translate, scale) {let lightMVP = mat4.create();let modelMatrix = mat4.create();let viewMatrix = mat4.create();let projectionMatrix = mat4.create();// Model transformmat4.translate(modelMatrix, modelMatrix, translate);mat4.scale(modelMatrix, modelMatrix, scale);// View transformmat4.lookAt(viewMatrix, this.lightPos, this.focalPoint, this.lightUp);// Projection transformmat4.ortho(projectionMatrix, -100, 100, -100, 100, 0.01, 500);mat4.multiply(lightMVP, projectionMatrix, viewMatrix);mat4.multiply(lightMVP, lightMVP, modelMatrix);return lightMVP;}
        useShadowMap      
第二个任务是完善useShadowMap函数。
         在vertexShader中,已经预先帮我们计算好了每一个片元在以光源为视点的坐标的位置vPositionFromLight,因此在fragmentShader里便能专注实现功能。
        要使用阴影贴图,需在fragmentShader的main函数中,先将[-1,1]空间转化为[0,1]空间。
  vec3 shadowCoord = vPositionFromLight.xyz / vPositionFromLight.w;shadowCoord = (shadowCoord + 1.0) / 2.0;

        转换完后,[0,1]空间的xy坐标就能刚好对应贴图的uv坐标。在阴影贴图中使用uv坐标查询相应位置的深度。如果查到的深度比现在的点的深度小,说明现在的点被遮挡。

float useShadowMap(sampler2D shadowMap, vec4 shadowCoord){vec4 shadowColor = texture2D(shadowMap,shadowCoord.xy);float depth = unpack(shadowColor);float z = shadowCoord.z;if(z > depth + EPS ){return 0.0;}return 1.0;
}
        PCF

        第三个任务是实现PCF的功能。其实就是在原来ShadowMap的基础上,对周围进行采样,并将结果求平均。

        先预定义一些常量以方便下面的PCF和PCSS的运算

#define SHADOW_MAP_SIZE 2048    //阴影贴图大小
#define NEAR 0.01               //之前在计算正交投影矩阵的时候的zNear
#define LIGHT_SIZE 10.0         //光源在世界的大小
#define LIGHT_UV_SIZE 0.15      //光源在贴图上的大小

        开始先调用作业框架里自带的获取采样点的函数。获取对周围的随机采样方向,乘以采样半径大小再除以贴图大小即可求得采样点在贴图中的位置。在这里定义一个阻挡值来记录积累阻挡的数量。作业原代码,参数是没有sampleRadious的,这里是另外加上去的,方便控制采样区域大小。

float PCF(sampler2D shadowMap, vec4 coords ,float sampleRadious ) {poissonDiskSamples(coords.xy);float block = 0.0;for(int i =0;i<NUM_SAMPLES;i++){vec4 shadowColor = texture2D(shadowMap,coords.xy + poissonDisk[i] * sampleRadious/ float(SHADOW_MAP_SIZE) );float depth = unpack(shadowColor);float z = coords.z;if(z > depth + EPS ){block = block + 1.0;}}return 1.0 - block / float(NUM_SAMPLES);}
        findBlocker

        该函数实现的功能是计算遮挡物的平均深度。

        要根据点到光源的距离来决定采样区域的大小,也就是W_{Penumbra},采用相似三角形来计算。得到采样区域的大小后,进行采样。因为是计算遮挡物的平均深度,所以没有遮挡物的话,返回-1处理,有遮挡物返回遮挡物的平均深度,而不是返回整个采样区域的平均深度。

float findBlocker( sampler2D shadowMap,  vec2 uv, float zReceiver ) {poissonDiskSamples(uv);int blockCnt = 0;float blockDepth = 0.0;float sampleSize = LIGHT_UV_SIZE * (vPositionFromLight.z - NEAR ) / vPositionFromLight.z;for(int i =0;i<NUM_SAMPLES;i++){vec4 shadowColor = texture2D(shadowMap,uv + poissonDisk[i] * 10.0 / float(SHADOW_MAP_SIZE) );float depth = unpack(shadowColor);if(zReceiver > depth + EPS ){blockCnt++;blockDepth = blockDepth + depth;}}if(blockCnt == 0)return -1.0;return blockDepth /float(blockCnt);}
        PCSS

        有了上面的findBlolcker后,实现起来就非常简单,使用上面findblocker的数据,调用PCF即可。注意当avgDepth为-1时,即无遮挡,为特殊情况,直接返回1.0。

float PCSS(sampler2D shadowMap, vec4 coords){vec2 uv = coords.xy;float zReceiver = coords.z;// STEP 1: avgblocker depthfloat avgDepth = findBlocker(shadowMap,uv,zReceiver);if(avgDepth < 0.0)return 1.0;// STEP 2: penumbra sizefloat penumbra = (zReceiver - avgDepth) / avgDepth * LIGHT_SIZE;// STEP 3: filteringreturn PCF(shadowMap,coords,penumbra);
}
void main(void) {vec3 shadowCoord = vPositionFromLight.xyz / vPositionFromLight.w;shadowCoord = (shadowCoord + 1.0) / 2.0;float visibility;//visibility = useShadowMap(uShadowMap, vec4(shadowCoord, 1.0));//visibility = PCF(uShadowMap, vec4(shadowCoord, 1.0) , 10.0);visibility = PCSS(uShadowMap, vec4(shadowCoord, 1.0));vec3 phongColor = blinnPhong();gl_FragColor = vec4(phongColor * visibility, 1.0);//gl_FragColor = vec4(phongColor, 1.0);
}

结果

ShadowMap硬阴影

PCF实现软阴影

PCSS实现软阴影

这篇关于GAMES202——作业1 实时阴影(ShadowMap,PCF,PCSS)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116031

相关文章

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

从入门到精通详解LangChain加载HTML内容的全攻略

《从入门到精通详解LangChain加载HTML内容的全攻略》这篇文章主要为大家详细介绍了如何用LangChain优雅地处理HTML内容,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录引言:当大语言模型遇见html一、HTML加载器为什么需要专门的HTML加载器核心加载器对比表二

前端如何通过nginx访问本地端口

《前端如何通过nginx访问本地端口》:本文主要介绍前端如何通过nginx访问本地端口的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、nginx安装1、下载(1)下载地址(2)系统选择(3)版本选择2、安装部署(1)解压(2)配置文件修改(3)启动(4)

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动