原创~尚未发表!基于改进秃鹰算法的多区域微网经济优化调度程序代码!

本文主要是介绍原创~尚未发表!基于改进秃鹰算法的多区域微网经济优化调度程序代码!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

随着光伏、风电等分布式电源的发展,配电网的供电模式得以改变,解决了传统火力发电带来的能源匮乏及环境污染问题,但其发电的随机性及波动性对配电网的稳定运行造成一定影响。以多个微电网组成的微电网群可有效消纳分布式电源,提高供电灵活性及可靠性,减少弃光、弃风率,降低经济成本。因此,构建微电网优化调度模型已成为微电网综合控制的核心问题之一,对减少微电网系统运行成本及环境污染具有重要意义。

微电网群系统结构

微电网群由3个独立的微电网(microgrid,MG)组成,各微电网内部包含光伏(photovoltaic,PV)、风力发电机(wind turbine,WT)、电动汽车(electric vehicle,EV)、微型燃气轮机(microturbine,MT)、储能电池(battery,BT)及负荷,通过能量管理中心实现彼此之间电能交互及向配电网买卖电,如下图所示。

目标函数

考虑微电网群系统运行成本及环境成本,构建微电网群经济优化调度模型,其中运行成本包括可控分布式发电单元的发电成本、设备运行维护成本、BT运行成本、电能交易成本;环境成本为CO2、SO2、NOx污染物气体的排放惩罚成本,以微电网群系统总运行成本为目标函数进行优化调度。

秃鹰搜索算法

BES是一种针对秃鹰狩猎行为提出的自然启发式算法(仿生算法),包含选择搜索空间、搜索猎物及俯冲3个阶段。

选择搜索空间阶段:该阶段秃鹰根据猎物数量随机选择搜索区域,飞到当前最优个体附近。

搜索猎物阶段:该阶段秃鹰在选定的搜索空间内螺旋飞行,加速搜索猎物。

俯冲阶段:该阶段秃鹰从当前最优位置以螺旋飞行的方式冲向猎物。

算法步骤

程序介绍

本程序构建以3个单微电网组成的微电网群优化调度模型,综合考虑系统总运行成本及环境成本,采用改进秃鹰算法(improved bald eagle search algorithm,IBES)进行求解,通过融合反向学习和柯西变异策略来提高秃鹰算法(bald eagle search algorithm,BES)的寻优精度,最终通过与其他算法对模型进行求解,验证改进后算法的优越性。程序中算例丰富,注释清晰,干货满满,创新性和可扩展性很高,足以撑起一篇高水平论文!下面对程序做简要介绍!

程序适用平台:Matlab+Yalmip+Cplex

参考文献:《基于改进秃鹰算法的微电网群经济优化调度研究》-太阳能学报

程序结果

部分程序

%% 设置种群参数
parameters;
sizepop = 40;                       % 初始种群个数
dim = 288;                          % 空间维数
ger = 500;                          % 最大迭代次数   
[x_max, x_min] = set_pop(dim);      % 位置上下限
a = 2;                              % 位置变化参数
a1 = 10;                            % 搜索点之间角的参数
R = 1.5;                            % 搜索周期数
c1 = 1.8;                           % 增加秃鹰移动强度的随机数
c2 = 1.8;                           % 增加秃鹰移动强度的随机数
[x,y] = polr(a,R,sizepop);          % 搜索猎物阶段的参数    
[x1,y1] = swoo_p(a,R,sizepop);      % 俯冲阶段的参数
%% 种群初始化
pop = x_min + rand(sizepop,dim).*(x_max - x_min);   % 初始化种群  
pop_best = pop(1,:);                                % 初始化群体最优位置
fitness = zeros(1,sizepop);                         % 所有个体的适应度
fitness_best = inf;                                 % 初始化群体最优适应度
%% 初始的适应度% 计算适应度值
​fitness(k) = objective_fun(pop(k,:));
​​fitness_best = fitness(k);
​pop_best = pop(k,:);
history_IBES = zeros(1,ger);  % IBES历史最优适应度值
%% 迭代求最优解
% 1.选择搜索空间阶段
pop_new = pop_best + 2*rand(1,dim).*(mean(pop) - pop(k,:));
fitness_new = objective_fun(pop_new);
% 2.搜索猎物阶段
pop_new = pop(k,:) + y(k)*(pop(k,:) - pop(k + 1,:)) + x(k)*(pop(k,:) - mean(pop));fitness_new = objective_fun(pop_new);
​% 3.俯冲阶段
​pop_new = rand(1,dim).*pop_best + x(k)*(pop(k,:) - c1*mean(pop)) + y(k)*(pop(k,:) - c2*pop_best);
​fitness_new = objective_fun(pop_new);
% 4.融合反向学习和柯西变异策略​
​pop1 = x_max + rand(1,dim).*(x_min - pop(k,:));
​L = ((ger - iter)/ger)^iter;
pop_new = pop1 + L*(pop(k,:) - pop1);

部分内容源自网络,侵权联系删除!

欢迎感兴趣的小伙伴关注并私信获取完整版代码,小编会不定期更新高质量的学习资料、文章和程序代码,为您的科研加油助力!

这篇关于原创~尚未发表!基于改进秃鹰算法的多区域微网经济优化调度程序代码!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115792

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份