原创~尚未发表!基于改进秃鹰算法的多区域微网经济优化调度程序代码!

本文主要是介绍原创~尚未发表!基于改进秃鹰算法的多区域微网经济优化调度程序代码!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

随着光伏、风电等分布式电源的发展,配电网的供电模式得以改变,解决了传统火力发电带来的能源匮乏及环境污染问题,但其发电的随机性及波动性对配电网的稳定运行造成一定影响。以多个微电网组成的微电网群可有效消纳分布式电源,提高供电灵活性及可靠性,减少弃光、弃风率,降低经济成本。因此,构建微电网优化调度模型已成为微电网综合控制的核心问题之一,对减少微电网系统运行成本及环境污染具有重要意义。

微电网群系统结构

微电网群由3个独立的微电网(microgrid,MG)组成,各微电网内部包含光伏(photovoltaic,PV)、风力发电机(wind turbine,WT)、电动汽车(electric vehicle,EV)、微型燃气轮机(microturbine,MT)、储能电池(battery,BT)及负荷,通过能量管理中心实现彼此之间电能交互及向配电网买卖电,如下图所示。

目标函数

考虑微电网群系统运行成本及环境成本,构建微电网群经济优化调度模型,其中运行成本包括可控分布式发电单元的发电成本、设备运行维护成本、BT运行成本、电能交易成本;环境成本为CO2、SO2、NOx污染物气体的排放惩罚成本,以微电网群系统总运行成本为目标函数进行优化调度。

秃鹰搜索算法

BES是一种针对秃鹰狩猎行为提出的自然启发式算法(仿生算法),包含选择搜索空间、搜索猎物及俯冲3个阶段。

选择搜索空间阶段:该阶段秃鹰根据猎物数量随机选择搜索区域,飞到当前最优个体附近。

搜索猎物阶段:该阶段秃鹰在选定的搜索空间内螺旋飞行,加速搜索猎物。

俯冲阶段:该阶段秃鹰从当前最优位置以螺旋飞行的方式冲向猎物。

算法步骤

程序介绍

本程序构建以3个单微电网组成的微电网群优化调度模型,综合考虑系统总运行成本及环境成本,采用改进秃鹰算法(improved bald eagle search algorithm,IBES)进行求解,通过融合反向学习和柯西变异策略来提高秃鹰算法(bald eagle search algorithm,BES)的寻优精度,最终通过与其他算法对模型进行求解,验证改进后算法的优越性。程序中算例丰富,注释清晰,干货满满,创新性和可扩展性很高,足以撑起一篇高水平论文!下面对程序做简要介绍!

程序适用平台:Matlab+Yalmip+Cplex

参考文献:《基于改进秃鹰算法的微电网群经济优化调度研究》-太阳能学报

程序结果

部分程序

%% 设置种群参数
parameters;
sizepop = 40;                       % 初始种群个数
dim = 288;                          % 空间维数
ger = 500;                          % 最大迭代次数   
[x_max, x_min] = set_pop(dim);      % 位置上下限
a = 2;                              % 位置变化参数
a1 = 10;                            % 搜索点之间角的参数
R = 1.5;                            % 搜索周期数
c1 = 1.8;                           % 增加秃鹰移动强度的随机数
c2 = 1.8;                           % 增加秃鹰移动强度的随机数
[x,y] = polr(a,R,sizepop);          % 搜索猎物阶段的参数    
[x1,y1] = swoo_p(a,R,sizepop);      % 俯冲阶段的参数
%% 种群初始化
pop = x_min + rand(sizepop,dim).*(x_max - x_min);   % 初始化种群  
pop_best = pop(1,:);                                % 初始化群体最优位置
fitness = zeros(1,sizepop);                         % 所有个体的适应度
fitness_best = inf;                                 % 初始化群体最优适应度
%% 初始的适应度% 计算适应度值
​fitness(k) = objective_fun(pop(k,:));
​​fitness_best = fitness(k);
​pop_best = pop(k,:);
history_IBES = zeros(1,ger);  % IBES历史最优适应度值
%% 迭代求最优解
% 1.选择搜索空间阶段
pop_new = pop_best + 2*rand(1,dim).*(mean(pop) - pop(k,:));
fitness_new = objective_fun(pop_new);
% 2.搜索猎物阶段
pop_new = pop(k,:) + y(k)*(pop(k,:) - pop(k + 1,:)) + x(k)*(pop(k,:) - mean(pop));fitness_new = objective_fun(pop_new);
​% 3.俯冲阶段
​pop_new = rand(1,dim).*pop_best + x(k)*(pop(k,:) - c1*mean(pop)) + y(k)*(pop(k,:) - c2*pop_best);
​fitness_new = objective_fun(pop_new);
% 4.融合反向学习和柯西变异策略​
​pop1 = x_max + rand(1,dim).*(x_min - pop(k,:));
​L = ((ger - iter)/ger)^iter;
pop_new = pop1 + L*(pop(k,:) - pop1);

部分内容源自网络,侵权联系删除!

欢迎感兴趣的小伙伴关注并私信获取完整版代码,小编会不定期更新高质量的学习资料、文章和程序代码,为您的科研加油助力!

这篇关于原创~尚未发表!基于改进秃鹰算法的多区域微网经济优化调度程序代码!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115792

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个