【视频讲解】数据挖掘实战:Python金融贷款模型分类潜在贷款客户

本文主要是介绍【视频讲解】数据挖掘实战:Python金融贷款模型分类潜在贷款客户,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全文链接:https://tecdat.cn/?p=37521

原文出处:拓端数据部落公众号

分析师:Hengtao Fan

模型的存在依托于这样一个事实:基于概率的决策乃是最优之选。将概率转化为评分,能够便于对齐风险。而评分则是通过统计的方法来识别潜在客户,进而判断客户是否合乎心意。这里的 “合意” 由我们预先定义,可以涵盖诸如风险、收益率、响应率、续借意愿、违约后的偿还意愿等等诸多方面。

实际上,在业务的一系列环节中均可采用模型方案。当我们谈及风控中有哪些模型可做时,也就相当于在变相探讨业务上有哪些环节能够进行精细化决策。

在金融信贷领域,授信、定价等产品信息会直接左右客户是否选择用信。此外,客户自身的需求程度、竞品授信定价信息、自身经济能力、家庭环境等因素也都会对用信行为产生影响。对于放贷机构而言,在授信额度 / 定价处于允许范围内时(例如额度越高,风险也会相应升高),期望能够提高整体用信率,从而扩大业务规模。如此一来,如果能够提前预测出用户的用信概率,便可以将其用于指导运营活动和授信定价策略,以促进业务的增长。

在这个项目中,我们对如何使用分类模型来分辨客户是否会贷款进行了深入分析。

一、贷款对银行的重要性

贷款对于银行维持业务至关重要。为什么呢?因为货币是银行的产品!银行的主要业务包括吸收存款和发放贷款。存款人和贷款人分别与银行形成特定的关系。

存款人将资金存入银行,银行支付一定的利息(例如 3%)。而贷款人从银行获得贷款,并支付更高的利息(例如 8%)。银行通过这种利息差获取利润。

二、识别银行客户的重要性

(一)有贷款需求的客户
给予更多时间来促成贷款,以获得更有效的客户,增加市场竞争力。

(二)无贷款需求的客户
优先联系以确保时效性,但无需投入过多精力。此类客户价值较低且缺乏竞争力,不确定性较高,应最后联系以减少损失。

三、项目的必要性

对于任何企业来说,创造收入都是至关重要的。银行也是如此,发放贷款是银行获取收入的最重要方式之一。银行需要快速识别有贷款需求的用户,以便确定客户是否会贷款,同时考虑客户属性、贷款属性、联系属性以及社会和经济属性等因素,从而为银行创造收入。

四、业务问题及预期结果

(一)业务问题
准确识别有贷款需求的客户是关键问题。影响因素包括客户违约历史、家庭贷款历史、个人贷款历史、就业环境等。目前,识别有贷款需求客户的比例为 30%,期望未来能达到 90% 以上。

(二)预期结果
期望通过本项目能够识别更多有贷款需求的客户,为银行带来更多收入。

五、分析方法

关键问题是将每个观察对象(客户)分类为两类(会贷款 / 不会贷款)之一,这是一个二元分类问题。采用逻辑回归和决策树两种方法进行分析。

逻辑回归模型:
决策树:从根节点开始,根据条件进行分支,最终到达叶节点,每个叶节点代表一个分类结果。

两种方法都是为了将每个观察对象准确分类。

六、数据筛选与描述

在建模之前,需要选择满足逻辑回归和决策树数据要求的数据。本项目中,银行特别关注客户属性、贷款属性和宏观环境是否会影响客户的贷款需求。例如,在经济衰退时期,客户更有可能贷款。通过比较箱线图确定相关性,选择相关性高的特征。

七、分析计划

(一)模型构建

  1. 数据转换:
    • 本数据集无空值。
    • 平衡数据。
    • 对一些连续特征进行转换,使其值位于 0~1 区间,消除不同取值范围的影响。
    • 将输出变量从 “是” 和 “否” 转换为 0 和 1。
    • 将数据集分为训练集和测试集。
  2. 模型迭代与优化:
    • 选择本项目中要使用的变量子集。
    • 描述输出(分类)变量的分布(使用柱状图)。
    • 报告连续输入变量的均值、中位数和标准差等值。

(二)结果(数据转换)
创建平衡的训练集和测试集,对连续变量进行单位转换,使其值位于 0~1 区间;对分类变量进行因子转换,去除 “未知” 属性;转换输出变量。经过数据平衡和去除未知数据后,若某个变量失去分类意义则将其去除。

八、建议

经济状况对银行贷款业务有至关重要的影响。从两种模型来看,在经济良好时,银行应尽可能多地联系客户(此时客户类型不重要);在经济衰退时,应避免大规模寻找客户,而应寻找高净值、有贷款需求的个人,如已婚、高学历、无抵押贷款和个人贷款的人,因为他们违约的可能性较低。在经济繁荣时联系更多客户以获取更多利润,在经济低迷时联系更多优质客户,以实现项目目标:识别更多有贷款需求的客户并创造更多收入。

Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户

最近我们被客户要求撰写关于银行拉新活动的研究报告,包括一些图形和统计输出。

项目背景:银行的主要盈利业务靠的是贷款,这些客户中的大多数是存款大小不等的责任客户(存款人)。银行拥有不断增长的客户

该银行希望增加借款人(资产客户),开展更多的贷款业务,并通过贷款利息赚取更多利润。因此,银行希望将负债的客户转换为个人贷款客户。(同时保留他们作为存款人)。该银行去年针对负债客户开展的一项活动显示,成功实现了9%以上的成功转化率。该部门希望建立一个模型,来帮助他们确定购买贷款可能性更高的潜在客户。可以增加成功率,同时降低成本。

数据集

下面给出的文件包含5000个客户的数据  查看文末了解数据获取方式  。数据包括客户人口统计信息(年龄,收入等),客户与银行的关系(抵押,证券账户等)以及客户对上次个人贷款活动的因变量(个人贷款)。在这5000个客户中,只有480个(= 9.6%)接受了先前活动中提供给他们的个人贷款

data.head()

图片

data.columns

图片

属性信息

属性可以相应地划分:

  • 变量 ID 一个人的客户ID与贷款之间没有关联,也无法为将来的潜在贷款客户提供任何一般性结论。我们可以忽略此信息进行模型预测。

二进制类别具有五个变量,如下所示:

  • 个人贷款-该客户是否接受上一个广告系列提供的个人贷款? 这是我们的目标变量
  • 证券帐户-客户在银行是否有证券帐户?
  • CD帐户-客户在银行是否有存款证明(CD)帐户?
  • 网上银行-客户是否使用网上银行?
  • 信用卡-客户是否使用银行发行的信用卡?

数值变量如下:

  • 年龄-客户的年龄
  • 工作经验
  • 收入-年收入(元)
  • CCAvg-平均信用卡消费
  • 抵押-房屋抵押价值

有序分类变量是:

  • 家庭-客户的家庭人数
  • 教育程度-客户的教育程度

标称变量是:

  • ID
  • 邮政编码
data.shape

图片

 

图片

# 文件中没有列有空数据
data.apply(lambda x : sum(x.isnull()))

图片

 

图片

 

图片

两两变量散点图

图片

  • 年龄 特征通常是分布的,大多数客户年龄在30岁到60岁之间。
  • 经验 大多分布在8年以上经验的客户。这里的 平均值 等于中 位数。有负数 。这可能是数据输入错误,因为通常无法衡量负数的工作经验。我们可以删除这些值,因为样本中有3或4条记录。
  • 收入出现 正偏斜。大多数客户的收入在45,000到55K之间。我们可以通过说平均值 大于 中位数来确认这一点
  • CCAvg 也是一个正偏变量,平均支出在0K到10K之间,大多数支出不到2.5K
  • 抵押 70%的人的抵押贷款少于4万。但是最大值为635K
  • 家庭和教育变量是序数变量。家庭分布均匀

有52条记录经验为负数。在进一步进行之前,我们需要对这些记录进行清理

 

有52条负数经验的记录

图片

以下代码执行以下步骤:

  • 对于具有ID的记录,获取Age column的值
  • 对于具有ID的记录,获取Education column的值
  • 从具有正数经验的记录的数据框中过滤符合以上条件的记录,并取中位数
  • 将中位数填充原本负数经验的位置
data.loc[np.where(['ID']==id)]["Education"].tolist()[0]
df_filtered['Experience'].median()
# 检查是否有负数经验的记录
data[data['Experience'] < 0]['Experience'].count()
 

图片

收入和教育对个人贷款的影响

 

图片

观察 :看来教育程度为1的客户收入更高。但是,接受了个人贷款的客户的收入水平相同

图片

推论 :从上图可以看出,没有个人贷款的客户和拥有个人贷款的客户的抵押贷款较高。

图片

观察 :大多数没有贷款的客户都有证券账户

图片

观察:家庭人数对个人贷款没有任何影响。但是似乎3岁的家庭更有可能借贷。考虑未来的推广活动时,这可能是一个很好的观察结果。

图片

观察:没有CD帐户的客户,也没有贷款。这似乎占多数。但是几乎所有拥有CD帐户的客户也都有贷款

图片

图片

观察:该图显示有个人贷款的人的信用卡平均费用更高。平均信用卡消费中位数为3800元,表明个人贷款的可能性更高。较低的信用卡支出(中位数为1400元)不太可能获得贷款。这可能是有用的信息。

图片

观察 上图显示与经验和年龄呈正相关。随着经验的增加,年龄也会增加。颜色也显示教育程度。四十多岁之间存在差距,大学以下的人也更多

# 与热图的关联性corr = data.corr()
plt.figure(figsize=(13,7))
# 创建一个掩码,以便我们只看到一次相关的值a = sns.heatmap(corr,mask=mask, annot=True, fmt='.2f')

图片

观察

  • 收入和CCAvg呈中等相关。
  • 年龄和工作经验高度相关
 

看下面的图,收入低于10万的家庭比高收入的家庭更不可能获得贷款。

图片

应用模型

将数据分为训练集和测试集

train_labels = train_set
test_labels = test_set

决策树分类器

DecisionTreeClassifier(class_weight=None, criterion='entropy', ...)
dt_model.score
0.9773333333333334
dt_model.predict(test_set)

 

查看测试集

test_set.head(5)

图片

朴素贝叶斯

naive_model.fit(train_set, train_labels)
naive_model.score
0.8866666666666667

随机森林分类器

 

图片

randomforest_model.score(test_set,test_labels)
0.8993333333333333

KNN(K-最近邻居)

data.drop(['Experience' ,'ID'] , axis = 1).drop(labels= "PersonalLoan" , axis = 1)
train_set_dep = data["PersonalLoan"]
acc = accuracy_score(Y_Test, predicted)
print(acc)
0.9106070713809206

模型比较

for name, model in models:kfold = model_selection.KFold(n_splits=10)cv_results = model_selection.cross_val_score(model, X, y, cv, scoring)# 箱线图算法的比较
plt.figure()

图片

图片

图片

结论

通用银行的目的是将负债客户转变为贷款客户。他们想发起新的营销活动;因此,他们需要有关数据中给出的变量之间的有联系的信息。本研究使用了四种分类算法。从上图可以看出,随机森林 算法似乎 具有最高的精度,我们可以选择它作为最终模型。


图片

本文选自《Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户》。

关于分析师

在此对 Hengtao Fan 对本文所作的贡献表示诚挚感谢,他在昆士兰大学完成了商业分析与信息系统双专业的学位,专注数据分析、机器学习、Python 文本分析、数据建模(ANN、KNN、NB、决策树和随机森林等)领域。擅长 R 语言、Python、Excel、Office、SQL。

这篇关于【视频讲解】数据挖掘实战:Python金融贷款模型分类潜在贷款客户的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115665

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal