C++开发人脸性别识别教程(4)——OpenCv的人脸检测函数

2024-08-28 18:18

本文主要是介绍C++开发人脸性别识别教程(4)——OpenCv的人脸检测函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  这个项目主要包含三部分:人脸检测、特征提取、性别分类:

  这篇博客中我们重点介绍OpenCv的人脸检测函数。这篇博客我们先不提MFC,而是在win32控制台下编写一段人脸检测的程序。

  一、开启摄像头

  我们先讲解如何通过摄像头来采集图像,这听起来更有实际意义。

  1、新建工程并配置OpenCv(注意工程类型选择win32控制台应用程序):

  2、包含头文件

  OpenCv2.x版本包含头文件非常方便,一句话搞定:

#include <opencv2\opencv.hpp>using namespace cv;
using namespace std;

  谈到包含头文件,这里有一个地方需要详细说一下,就是OpenCv2.x之所以操作简洁,是因为其将各个模块的头文件全部置于“opencv.hpp”这个文件中了,右键打开opencv.hpp文档,你会发现如下内容:

  3、初始化一个摄像头捕捉器

  首先,需要建立一个摄像头捕捉器,并将其与当前设备中的摄像头相关联:

    /***********初始化一个摄像头捕捉器***********/CvCapture* capture = cvCreateCameraCapture(0);cvNamedWindow("Camera");

  注意以"cv"开头的结构体和函数名都是隶属于OpenCv1.x版本中的内容,不过OpenCv2.x是完全兼容1.x版本的,而且貌似在2.x版本并未对摄像头相关函数进行重写,因此这里暂且延用1.x中的代码。

  4、调用摄像头步骤画面并显示

  首先,给出代码,稍后解释:

    IplImage* cameraImage = NULL;while ((cameraImage = cvQueryFrame(capture)) != NULL){cvShowImage("Camera",cameraImage);cvWaitKey(1);}

  显然cvQueryFrame()函数的作用是在当前的时间点从摄像头抓取的视频流中截出一帧,这里将其赋值给变量camearImage(IplImage*类型,因为这是1.0的代码),若其非空,则显示在屏幕上。注意这里必须添加延时函数cvWaitKey(单位是毫秒),哪怕只延时一毫秒否则将无法正常显示摄像头输出。

  按下Ctrl+F5,程序正常运行:

  二、人脸检测

  OpenCv2.x版本中封装的人脸检测函数基于AdaBoost(级联分类器)人脸检测算法,当然这里我们无需深入了解算法相关的知识,因为Intel已经将需要用到的、训练好的人脸检测器(分类器)放在了安装文件里:

  1、准备工作

  调用人脸检测函数前需要做一些准备工作,分别是初始化所需内存、初始化检测器指针、设置检测器路径:

static CvMemStorage* storage            = NULL;
static CvHaarClassifierCascade* cascade = NULL;
const char* cascadePath                 = "D:\\opencv\\sources\\data\
\\haarcascades\\haarcascade_frontalface_alt_tree.xml";

  这里有两个问题需要强调:

  (1)从路径中可以看出,检测器位于安装目录下的source文件夹下的data文件夹下的haarcascades文件夹中。

  (2)在C++表示路径是要用双斜杠,因为第一个斜杠会默认为是转义字符,对第二个斜杠进行转义。

  (3)这三个变量均为全局变量。

  2、图像灰度化

  由于这里用到的人脸检测函数主要针对于灰度图像,因此需要将摄像头采集的彩色图像灰度化:

        /**********灰度化***********/IplImage* grayImage = cvCreateImage(cvSize(cameraImage->width,cameraImage->height),8,1);cvCvtColor(cameraImage,grayImage,CV_BGR2GRAY);

  这里涉及到如何通过cvCreatImage创建一个空的8位无符号整型单通道图,即需要通过一个cvSize结构体来指定图像初始的尺寸,这点在opencv2.x得到了很大改良(Mat类的加入)。

  3、调用人脸检测函数

  首先,创建一块内存区域,并加载相应的检测器(这个在主循环外完成即可):

    storage = cvCreateMemStorage(0);cascade = (CvHaarClassifierCascade*)cvLoad(cascadePath);

  然后,清空指定位置内存块,调用人脸检测函数:

        /**********人脸检测***********/cvClearMemStorage(storage);CvSeq* objects = cvHaarDetectObjects(grayImage,cascade,storage,1.1,2,0,cvSize(30,30));

  cvhaardetectobjects函数的参数较为复杂,具体参数设置参见:cvhaardetectobjects参数设置。我们这里需要了解的就是这个函数的返回参数是一系列检测结果序列,每个检测结果实际上就是一个矩形结构体对象。

  4、绘制人脸区域矩形框

  接下来一一绘制检测到的矩形结果:

        /**********绘制检测结果***********/for (int i = 0; i < (objects ? objects->total : 0); i++){CvRect* rect = (CvRect*)cvGetSeqElem(objects,i);cvRectangle(cameraImage,cvPoint(rect->x,rect->y),cvPoint(rect->x + rect->width,rect->y + rect->height),cvScalar(0.0,255));}cvShowImage("Camera",cameraImage);

  注意这里需要把之前测试摄像头程序中的图片显示语句注释掉,否则前后在显示图像时会发生覆盖,不能正常看到图像的检测结果:

  5、总程序

  这里给出摄像头人脸检测的总程序:

// Camera.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <opencv2\opencv.hpp>using namespace cv;
using namespace std;static CvMemStorage* storage            = NULL;
static CvHaarClassifierCascade* cascade = NULL;
const char* cascadePath                 = "D:\\opencv\\sources\\data\
\\haarcascades\\haarcascade_frontalface_alt_tree.xml";int _tmain(int argc, _TCHAR* argv[])
{/***********初始化一个摄像头捕捉器***********/CvCapture* capture = cvCreateCameraCapture(0);cvNamedWindow("Camera");/***********初始化人脸检测相关变量***********/IplImage* cameraImage = NULL;storage = cvCreateMemStorage(0);cascade = (CvHaarClassifierCascade*)cvLoad(cascadePath);while ((cameraImage = cvQueryFrame(capture)) != NULL){//cvShowImage("Camera",cameraImage);cvWaitKey(1);/**********灰度化***********/IplImage* grayImage = cvCreateImage(cvSize(cameraImage->width,cameraImage->height),8,1);cvCvtColor(cameraImage,grayImage,CV_BGR2GRAY);/**********人脸检测***********/cvClearMemStorage(storage);CvSeq* objects = cvHaarDetectObjects(grayImage,cascade,storage,1.1,2,0,cvSize(30,30));/**********绘制检测结果***********/for (int i = 0; i < (objects ? objects->total : 0); i++){CvRect* rect = (CvRect*)cvGetSeqElem(objects,i);cvRectangle(cameraImage,cvPoint(rect->x,rect->y),cvPoint(rect->x + rect->width,rect->y + rect->height),cvScalar(0.0,255));}cvShowImage("Camera",cameraImage);}return 0;
}

 

这篇关于C++开发人脸性别识别教程(4)——OpenCv的人脸检测函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115522

相关文章

Agent开发核心技术解析以及现代Agent架构设计

《Agent开发核心技术解析以及现代Agent架构设计》在人工智能领域,Agent并非一个全新的概念,但在大模型时代,它被赋予了全新的生命力,简单来说,Agent是一个能够自主感知环境、理解任务、制定... 目录一、回归本源:到底什么是Agent?二、核心链路拆解:Agent的"大脑"与"四肢"1. 规划模

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++构造函数中explicit详解

《C++构造函数中explicit详解》explicit关键字用于修饰单参数构造函数或可以看作单参数的构造函数,阻止编译器进行隐式类型转换或拷贝初始化,本文就来介绍explicit的使用,感兴趣的可以... 目录1. 什么是explicit2. 隐式转换的问题3.explicit的使用示例基本用法多参数构造

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大