YOLOv8改进 | 融合改进 | C2f融合Faster-GELU模块提升检测速度【完整代码 + 主要代码解析】

本文主要是介绍YOLOv8改进 | 融合改进 | C2f融合Faster-GELU模块提升检测速度【完整代码 + 主要代码解析】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有100+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转


本文介绍一种部分卷积(PConv)以高效提取特征,减少冗余计算和内存访问。基于PConv,构建了FasterNet神经网络,它在多种设备上运行更快,且机会不影响视觉任务的准确性。此外,卷积的机会函数将替换为GELU。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。 

专栏地址YOLOv8改进——更新各种有效涨点方法——点击即可跳转  

目录

1. 原理

2. 将C2f_Faster添加到yolov8网络中

2.1 C2f_Faster 代码实现

 2.2 Faster_Block_CGLU的神经网络模块代码解析

2.3 更改init.py文件

2.4 添加yaml文件

2.5 注册模块

2.6 执行程序

3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结


1. 原理

论文地址:GAUSSIAN ERROR LINEAR UNITS (GELUS)——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

GELU(Gaussian Error Linear Unit)激活函数是一种用于神经网络的非线性激活函数。它的主要原理基于将输入按其值进行加权,而不是像ReLU那样通过输入的符号来控制输出。

GELU的主要原理:

  1. 数学表达式:GELU的表达式为\text{GELU}(x) = x \Phi(x),其中\Phi(x) 是标准高斯分布的累积分布函数(CDF)。这意味着GELU函数的输出是输入值与输入值在标准正态分布中小于等于它的概率的乘积。

  2. 输入值的加权:不同于ReLU(直接将输入小于零的部分置为零),GELU通过 \Phi(x) 平滑地控制输入的通过情况。对于较大的正输入,GELU近似为输入本身;对于负输入,GELU将其逐渐减小到接近零,而不是直接变为零。

  3. 近似计算:GELU函数可以近似为以下公式,以便提高计算效率:\text{GELU}(x) \approx 0.5x(1 + \tanh[\sqrt{2/\pi}(x + 0.044715x^3)]) 这种近似形式保留了GELU的核心特性,并在计算速度上有所提升。

  4. 与ReLU和ELU的比较:GELU的非线性特性在多个任务中表现出色,例如计算机视觉、自然语言处理和语音识别。相比于ReLU和ELU,GELU能够更好地处理输入噪声,并且在没有丢弃的情况下表现出更低的训练损失。

通过这种平滑的处理方式,GELU在确保非线性的同时,能够在一定程度上保留输入的特性,这有助于网络更好地拟合复杂的数据分布。

2. 将C2f_Faster添加到yolov8网络中

2.1 C2f_Faster 代码实现

关键步骤一将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中,并在该文件的__all__中添加“C2f_Faster_CGLU”


from timm.models.layers import DropPath
class Partial_conv3(nn.Module):def __init__(self, dim, n_div=4, forward='split_cat'):super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x):# only for inferencex = x.clone()   # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x):# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xclass ConvolutionalGLU(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.) -> None:super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featureshidden_features = int(2 * hidden_features / 3)self.fc1 = nn.Conv2d(in_features, hidden_features * 2, 1)self.dwconv = nn.Sequential(nn.Conv2d(hidden_features, hidden_features, kernel_size=3, stride=1, padding=1, bias=True, groups=hidden_features),act_layer())self.fc2 = nn.Conv2d(hidden_features, out_features, 1)self.drop = nn.Dropout(drop)# def forward(self, x):#     x, v = self.fc1(x).chunk(2, dim=1)#     x = self.dwconv(x) * v#     x = self.drop(x)#     x = self.fc2(x)#     x = self.drop(x)#     return xdef forward(self, x):x_shortcut = xx, v = self.fc1(x).chunk(2, dim=1)x = self.dwconv(x) * vx = self.drop(x)x = self.fc2(x)x = self.drop(x)return x_shortcut + xclass Faster_Block_CGLU(nn.Module):def __init__(self,inc,dim,n_div=4,mlp_ratio=2,drop_path=0.1,layer_scale_init_value=0.0,pconv_fw_type='split_cat'):super().__init__()self.dim = dimself.mlp_ratio = mlp_ratioself.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.n_div = n_divself.mlp = ConvolutionalGLU(dim)self.spatial_mixing = Partial_conv3(dim,n_div,pconv_fw_type)self.adjust_channel = Noneif inc != dim:self.adjust_channel = Conv(inc, dim, 1)if layer_scale_init_value > 0:self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)self.forward = self.forward_layer_scaleelse:self.forward = self.forwarddef forward(self, x):if self.adjust_channel is not None:x = self.adjust_channel(x)shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.mlp(x))return xdef forward_layer_scale(self, x):shortcut = xx = self.spatial_mixing(x)x = shortcut + self.drop_path(self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))return xclass C3_Faster_CGLU(C3):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):super().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e)  # hidden channelsself.m = nn.Sequential(*(Faster_Block_CGLU(c_, c_) for _ in range(n)))class C2f_Faster_CGLU(C2f):def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):super().__init__(c1, c2, n, shortcut, g, e)self.m = nn.ModuleList(Faster_Block_CGLU(self.c, self.c) for _ in range(n))

 2.2 Faster_Block_CGLU的神经网络模块代码解析

这段代码定义一个名为Faster_Block_CGLU的神经网络模块,主要包括了卷积操作、空间混合操作以及层级缩放。卷积函数使用的是带有GELU激活函数的ConvolutionalGLU

代码结构和关键部分:

  1. 构造函数 (__init__):

    • inc: 输入通道数。

    • dim: 输出通道数。

    • n_div: 空间混合操作中使用的通道划分因子,默认值为4。

    • mlp_ratio: MLP(多层感知器)中通道的扩展比例。

    • drop_path: DropPath的概率,用于随机丢弃通道以增强模型的鲁棒性。

    • layer_scale_init_value: 用于层级缩放的初始化值。

    • pconv_fw_type: 部分卷积的前向传播类型(split_cat是默认值)。

  2. ConvolutionalGLU (Gated Linear Unit with Convolution):

    • self.mlp = ConvolutionalGLU(dim):这是一个使用GELU激活函数的卷积操作,通常用于引入非线性特性。

    • GELU在这里用作激活函数,可以帮助网络更有效地捕捉输入特征的细微变化。

  3. 空间混合 (Partial_conv3):

    • self.spatial_mixing = Partial_conv3(dim, n_div, pconv_fw_type):这部分处理输入特征的空间信息,通过部分卷积操作实现。

  4. 通道调整 (adjust_channel):

    • 如果输入通道数inc与输出通道数dim不匹配,会通过一个1x1卷积层调整通道数,以便匹配后续操作。

  5. 层级缩放 (layer_scale):

    • 如果layer_scale_init_value大于0,将初始化一个可训练的缩放参数self.layer_scale。这部分通过在前向传播时对特征进行缩放来增强模型的学习能力。

前向传播 (forward) 和带层级缩放的前向传播 (forward_layer_scale):

  • forward:

    • 如果通道数需要调整,首先会通过adjust_channel进行处理。

    • 然后通过spatial_mixing进行空间信息的混合。

    • 最后通过mlp(此处即使用了GELU激活函数的卷积层)处理,并加上shortcut连接(残差连接)后的结果返回。

  • forward_layer_scale:

    • 这一部分与forward类似,不同的是,mlp输出会先乘以layer_scale再进行残差连接。这样可以对特征进行更加精细的控制。

总结:

这段代码实现了一个基于卷积的模块Faster_Block_CGLU,其中卷积操作采用了GELU激活函数。GELU使得这个模块能够更灵活地处理输入特征,尤其是在处理具有复杂模式的数据时。

2.3 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数   

 然后在下面的__all__中声明函数 

2.4 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/v8下面新建文件yolov8_Faster_Block_CGLU.yaml文件,粘贴下面的内容

  • OD【目标检测】
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f_Faster_CGLU, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f_Faster_CGLU, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f_Faster_CGLU, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f_Faster_CGLU, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f_Faster_CGLU, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f_Faster_CGLU, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f_Faster_CGLU, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f_Faster_CGLU, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)
  • Seg【语义分割】
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f_Faster_CGLU, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f_Faster_CGLU, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f_Faster_CGLU, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f_Faster_CGLU, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f_Faster_CGLU, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f_Faster_CGLU, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f_Faster_CGLU, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f_Faster_CGLU, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)

温馨提示:因为本文只是对yolov8基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。不明白的同学可以看这篇文章: yolov8yaml文件解读——点击即可跳转  


2.5 注册模块

关键步骤四:在task.py的parse_model函数中注册

2.6 执行程序

在train.py中,将model的参数路径设置为yolov8_Faster_Block_CGLU.yaml的路径

建议大家写绝对路径,确保一定能找到

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Pathif __name__ == '__main__':# 加载模型model = YOLO("ultralytics/cfg/v8/yolov8.yaml")  # 你要选择的模型yaml文件地址# Use the modelresults = model.train(data=r"你的数据集的yaml文件地址",epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

 🚀运行程序,如果出现下面的内容则说明添加成功🚀 

                   from  n    params  module                                       arguments0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]2                  -1  1      3448  ultralytics.nn.modules.block.C2f_Faster_CGLU [32, 32, 1, True]3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]4                  -1  2     18296  ultralytics.nn.modules.block.C2f_Faster_CGLU [64, 64, 2, True]5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]6                  -1  2     71536  ultralytics.nn.modules.block.C2f_Faster_CGLU [128, 128, 2, True]7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]8                  -1  1    207868  ultralytics.nn.modules.block.C2f_Faster_CGLU [256, 256, 1, True]9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]12                  -1  1     85176  ultralytics.nn.modules.block.C2f_Faster_CGLU [384, 128, 1]13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]15                  -1  1     21564  ultralytics.nn.modules.block.C2f_Faster_CGLU [192, 64, 1]16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]18                  -1  1     60600  ultralytics.nn.modules.block.C2f_Faster_CGLU [192, 128, 1]19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]21                  -1  1    240636  ultralytics.nn.modules.block.C2f_Faster_CGLU [384, 256, 1]22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLOv8_faster_CGLU summary: 265 layers, 2349204 parameters, 2349188 gradients, 6.8 GFLOPs

3. 完整代码分享

https://pan.baidu.com/s/1WKs66u904YmY2wZOlCdYDw?pwd=3kg6

 提取码: 3kg6 

4. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLOv8nGFLOPs

img

改进后的GFLOPs

5. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

6. 总结

Faster_Block_CGLU 是一个神经网络模块,结合了卷积、空间混合和层级缩放操作。它使用GELU激活函数来增强卷积层的非线性表达能力,能够灵活处理复杂输入特征。模块中的卷积操作由 `ConvolutionalGLU` 实现,并通过 `Partial_conv3` 进行空间信息的混合。当输入通道数与输出通道数不匹配时,使用 1x1 卷积进行调整。此外,通过残差连接和可选的层级缩放机制,模块能够在前向传播中更加精细地控制特征流,从而提高模型的学习能力。

这篇关于YOLOv8改进 | 融合改进 | C2f融合Faster-GELU模块提升检测速度【完整代码 + 主要代码解析】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115506

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

便携式气象仪器的主要特点

TH-BQX9】便携式气象仪器,也称为便携式气象仪或便携式自动气象站,是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。以下是关于便携式气象仪器的详细介绍:   主要特点   高精度与多功能:便携式气象仪器能够采集多种气象参数,包括但不限于风速、风向、温度、湿度、气压等,部分高级型号还能监测雨量和辐射等。数据采集与存储:配备微电脑气象数据采集仪,具有实时时钟、数据存

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X