Ubuntu16.04安装Nvidia驱动cuda,cudnn和tensorflow-gpu

2024-08-28 11:32

本文主要是介绍Ubuntu16.04安装Nvidia驱动cuda,cudnn和tensorflow-gpu,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 本文个人博客地址: 点击查看
  • 之前有在阿里云GPU服务器上弄过: 点击查看, 这里从装Nvidia开始

一、 安装Nvidia驱动

1.1 查找需要安装的Nvidia版本

1.1.1 官网
  • 官网上查找: https://www.nvidia.com/Download/index.aspx?lang=en-us
    • 这里是 GeForce GTX 1080 TI
    • 如下图,推荐 410 版本的

GPU对应nvidia版本

GPU对应驱动版本

1.1.2 命令行查看推荐驱动
  • 查看驱动:ubuntu-drivers devices, 如下图
ubuntu@ubuntu-System-Product-Name:~$ ubuntu-drivers devices
== cpu-microcode.py ==
driver   : intel-microcode - distro free== /sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0 ==
vendor   : NVIDIA Corporation
modalias : pci:v000010DEd00001B06sv00001458sd0000374Dbc03sc00i00
driver   : nvidia-410 - third-party free recommended
driver   : nvidia-384 - distro non-free
driver   : xserver-xorg-video-nouveau - distro free builtin
driver   : nvidia-390 - third-party free
driver   : nvidia-396 - third-party free
  • 注意这里添加了ppa, 若是没有,可能最新的只有nvidia-384, 但是若想安装cuda-9.0 需要大于384.81, 不然后面安装tensorflow-gpu 之后也会报错
    • 图片对应网址:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

cuda版本对应nvidia版本

  • 添加 ppa:
    • sudo add-apt-repository ppa:graphics-drivers/ppa (注意联网,去掉代理)
    • sudo apt update
  • 然后执行ubuntu-drivers devices就可以看到如上的结果
  • 安装:
    • 可能需要的依赖:sudo apt install dkms build-essential linux-headers-generic
    • 有些可能需要禁用nouveau模块,查看:https://blog.csdn.net/u012235003/article/details/54575758
    • sudo apt-get install linux-headers-$(uname -r)
    • sudo apt install nvidia-410
    • 重启机器
  • 查看:
    • nvidia-smi
    • 显示如下结果
(wangyongzhi_ml) ubuntu@ubuntu-System-Product-Name:/usr/local/cuda-10.0/bin$ nvidia-smi
Thu Oct 25 15:49:46 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.66       Driver Version: 410.66       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 108...  Off  | 00000000:01:00.0  On |                  N/A |
|  0%   44C    P8    20W / 250W |     42MiB / 11174MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce GTX 108...  Off  | 00000000:02:00.0 Off |                  N/A |
|  0%   50C    P8    20W / 250W |      2MiB / 11178MiB |      0%      Default |
+-------------------------------+----------------------+----------------------++-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0       949      G   /usr/lib/xorg/Xorg                            39MiB |
+-----------------------------------------------------------------------------+

二、安装cuda

  • 官网: https://developer.nvidia.com/cuda-toolkit-archive
  • 选择想要安装的版本,这里选择的是cuda-9.0, 下载
  • 安装
    • chmod +x cuda_9.0.176_384.81_linux-run
    • sudo ./cuda_9.0.176_384.81_linux-run
    • 根据提示安装选择即可
    • 添加环境变量
      • vim ~/.bashrc
      • 加入环境变量
# cuda9.0
export PATH=/usr/local/cuda-9.0/bin/:$PATH;
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64/:$LD_LIBRARY_PATH;
  • 测试1
    • nvcc -V
    • 如下图,版本为V9.0.176
(wangyongzhi_ml) ubuntu@ubuntu-System-Product-Name:~/wangyongzhi/software$ nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2017 NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release 9.0, V9.0.176
  • 测试2
    • 如果上面安装过程中选择了安装Examples, 会在 ~ 文件夹下生成测试NVIDIA_CUDA-9.0_Samples 的文件
    • 进入: cd NVIDIA_CUDA-9.0_Samples
    • make
    • 进入 NVIDIA_CUDA-9.0_Samples/bin/x86_64/linux/release 文件夹
      • 执行: ./deviceQuery, 可以看到类似如下信息
./deviceQuery Starting...CUDA Device Query (Runtime API) version (CUDART static linking)Detected 2 CUDA Capable device(s)Device 0: "GeForce GTX 1080 Ti"CUDA Driver Version / Runtime Version          10.0 / 9.0CUDA Capability Major/Minor version number:    6.1Total amount of global memory:                 11174 MBytes (11717181440 bytes)(28) Multiprocessors, (128) CUDA Cores/MP:     3584 CUDA CoresGPU Max Clock rate:                            1683 MHz (1.68 GHz)Memory Clock rate:                             5505 MhzMemory Bus Width:                              352-bitL2 Cache Size:                                 2883584 bytesMaximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layersMaximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layersTotal amount of constant memory:               65536 bytesTotal amount of shared memory per block:       49152 bytesTotal number of registers available per block: 65536Warp size:                                     32Maximum number of threads per multiprocessor:  2048Maximum number of threads per block:           1024

三、安装cudnn

  • 官网:https://developer.nvidia.com/rdp/cudnn-download
  • 选择cuda对应的版本, 我的选择如下图

cudnn版本

  • 安装
    • tar -zxvf cudnn-9.0-linux-x64-v7.3.1.20.tgz
    • 将解压得到的cuda 文件夹下的内容拷贝到对应的 /usr/local/cuda-9.0文件夹下即可

四、安装Anaconda和tensorflow-gpu

  • 官网: https://www.anaconda.com/download/#linux
  • 下载安装即可,我这里选择的是 python3.7 版本
  • 安装之后添加到环境变量:
# anaconda3
export PATH=/home/ubuntu/anaconda3/bin:$PATH
  • 创建虚拟环境,防止污染他人使用环境

    • conda create -n xxx python-3.6
    • conda install tensorflow-gpu
  • 测试

import tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
  • 打印如下信息:
2018-10-25 16:25:35.683507: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 0 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.683
pciBusID: 0000:01:00.0
totalMemory: 10.91GiB freeMemory: 10.72GiB
2018-10-25 16:25:35.783459: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:897] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2018-10-25 16:25:35.783843: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1405] Found device 1 with properties:
name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.683
pciBusID: 0000:02:00.0
totalMemory: 10.92GiB freeMemory: 10.76GiB
2018-10-25 16:25:35.784321: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1484] Adding visible gpu devices: 0, 1
2018-10-25 16:25:36.069610: I tensorflow/core/common_runtime/gpu/gpu_device.cc:965] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-10-25 16:25:36.069634: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971]      0 1
2018-10-25 16:25:36.069637: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 0:   N Y
2018-10-25 16:25:36.069639: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] 1:   Y N
2018-10-25 16:25:36.069852: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10367 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
2018-10-25 16:25:36.101498: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1097] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 10409 MB memory) -> physical GPU (device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1)
Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1
2018-10-25 16:25:36.134430: I tensorflow/core/common_runtime/direct_session.cc:288] Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1
/job:localhost/replica:0/task:0/device:GPU:1 -> device: 1, name: GeForce GTX 1080 Ti, pci bus id: 0000:02:00.0, compute capability: 6.1

五、 多个cuda版本切换

  • 安装cuda-9.0 会在 /usr/local/ 目录下
    • 如下图,它会创建一个软连接指向了 /usr/local/cuda-9.0/
(wangyongzhi_ml) ubuntu@ubuntu-System-Product-Name:/usr/local$ ll
总用量 48
drwxr-xr-x 12 root root 4096 10月 25 14:51 ./
drwxr-xr-x 13 root root 4096 10月 25 09:39 ../
drwxr-xr-x  2 root root 4096 4月  21  2016 bin/
lrwxrwxrwx  1 root root   19 10月 25 00:41 cuda -> /usr/local/cuda-9.0/
drwxr-xr-x 19 root root 4096 10月 25 14:52 cuda-10.0/
drwxr-xr-x 18 root root 4096 10月 25 00:41 cuda-9.0/
drwxr-xr-x  2 root root 4096 4月  21  2016 etc/
drwxr-xr-x  2 root root 4096 4月  21  2016 games/
drwxr-xr-x  2 root root 4096 4月  21  2016 include/
drwxr-xr-x  4 root root 4096 4月  21  2016 lib/
lrwxrwxrwx  1 root root    9 10月 24 14:52 man -> share/man/
drwxr-xr-x  2 root root 4096 4月  21  2016 sbin/
drwxr-xr-x  8 root root 4096 4月  21  2016 share/
drwxr-xr-x  2 root root 4096 4月  21  2016 src/
  • 所以正常安装cuda 其他版本,然后创建软连接指向对应的版本即可
sudo rm -rf cuda
sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda

Reference

  • https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

  • https://blog.csdn.net/u012235003/article/details/54575758

这篇关于Ubuntu16.04安装Nvidia驱动cuda,cudnn和tensorflow-gpu的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114638

相关文章

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

gradle安装和环境配置全过程

《gradle安装和环境配置全过程》本文介绍了如何安装和配置Gradle环境,包括下载Gradle、配置环境变量、测试Gradle以及在IntelliJIDEA中配置Gradle... 目录gradle安装和环境配置1 下载GRADLE2 环境变量配置3 测试gradle4 设置gradle初始化文件5 i

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

mac安装redis全过程

《mac安装redis全过程》文章内容主要介绍了如何从官网下载指定版本的Redis,以及如何在自定义目录下安装和启动Redis,还提到了如何修改Redis的密码和配置文件,以及使用RedisInsig... 目录MAC安装Redis安装启动redis 配置redis 常用命令总结mac安装redis官网下

如何安装 Ubuntu 24.04 LTS 桌面版或服务器? Ubuntu安装指南

《如何安装Ubuntu24.04LTS桌面版或服务器?Ubuntu安装指南》对于我们程序员来说,有一个好用的操作系统、好的编程环境也是很重要,如何安装Ubuntu24.04LTS桌面... Ubuntu 24.04 LTS,代号 Noble NumBAT,于 2024 年 4 月 25 日正式发布,引入了众