IGE-LIO:充分利用强度信息克服激光退化场景下的定位精度

本文主要是介绍IGE-LIO:充分利用强度信息克服激光退化场景下的定位精度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更多优质内容,请关注公众号:智驾机器人技术前线

1.论文信息

  • 论文标题:IGE-LIO: Intensity Gradient Enhanced Tightly-Coupled LiDAR-Inertial Odometry

  • 作者:Ziyu Chen, Hui Zhu, Biao Yu, Chunmao Jiang, Chen Hua, Xuhui Fu and Xinkai Kuang

  • 作者单位:中国科学技术大学

  • 论文地址:https://ieeexplore.ieee.org/abstract/document/10643007

2.摘要

同时定位与建图(SLAM)在移动机器人的状态估计中扮演着重要角色。大多数流行的激光雷达SLAM方法仅从环境的几何结构中提取特征点,这可能导致在退化场景中的定位不准确。在本文中,我们提出了一种新颖的框架,即强度梯度增强的紧耦合激光雷达-惯性里程计(IGE-LIO)。该框架提出了一种基于激光雷达强度梯度的特征提取方法,用于精确的姿态估计,克服了激光雷达-SLAM在退化环境中面临的挑战。计算每个激光雷达点的强度梯度后,我们从纹理信息中动态提取强度边缘点(IEPs)。此外,我们还基于几何信息提取了几何平面点(GPPs)和几何边缘点(GEPs)。然后,对每种类型的特征点进行误差分析,并设计了加权函数以校正测量噪声并减轻特征提取中额外不确定性引入的偏差。随后,通过结合点到平面和点到边缘关联的残差构建了一个迭代扩展卡尔曼滤波器(IEKF)框架。最后,在室内、室外和激光雷达退化场景中进行了广泛的实验。结果表明,与现有的仅几何方法相比,我们提出的方法在鲁棒性和准确性上有了显著提高,特别是在激光雷达退化场景中。

3.主要贡献

  • 提出了一个鲁棒的LIO框架,通过迭代扩展卡尔曼滤波器紧耦合激光雷达的几何和纹理信息与IMU,用于姿态估计。该框架能够为旋转激光雷达和固态激光雷达实现最优结果;

  • 提出了一种新颖的特征提取方法,它不仅提取几何平面点和几何边缘点,还计算每个激光雷达点的强度梯度,无需校准强度值,并使用动态阈值动态选择强度边缘点;

  • 为了区分和权衡每个特征点在姿态优化中的质量,本文引入了一种新的加权函数,该函数联合融合了几何信息和强度信息,用于几何平面点、几何边缘点和强度边缘点。

4.核心思想与方法

根据几何和强度信息提取几何平面点、几何边缘点和强度边缘点。此外,使用设计好的加权函数对每种类型的特征点进行误差分析。然后,为不同类别的特征点分别计算残差,并对状态进行迭代更新,直到达到收敛。最后,将带有标签的特征点存储在全局地图中。结果表明,所提出的方法不仅在激光雷达退化场景中实现了准确、鲁棒和实时的定位和建图,而且超越了传统的激光雷达SLAM,达到了与包含视觉信息的SLAM方法相媲美的结果。

IGE-LIO架构

IGE-LIO架构

5.实验仿真验证

6.总结 && 展望

在本文中,提出了IGE-LIO,一种强度梯度增强的激光雷达-惯性融合框架,它比FAST-LIO2更加鲁棒和准确,在退化环境中与包含相机的FAST-LIVO相比达到了相当的精度水平。本文利用激光雷达的强度信息来提取额外的强度边缘点,并将激光雷达和惯性传感器的测量值融合在一个误差状态迭代卡尔曼滤波器中。大量的定量和定性实验表明,引入强度梯度和加权函数提高了LIO的准确性和鲁棒性。此外,本文展示了我们的系统在具有挑战性的场景中,包括室内、室外和激光雷达退化环境中,更加稳定和准确。未来的工作将引入后端优化和闭环检测以提高定位的全局一致性。

本文仅做学术分析,如有侵权,请联系删文!

更多优质内容,请关注公众号:智驾机器人技术前线

这篇关于IGE-LIO:充分利用强度信息克服激光退化场景下的定位精度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113649

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等

Linux命令(11):系统信息查看命令

系统 # uname -a # 查看内核/操作系统/CPU信息# head -n 1 /etc/issue # 查看操作系统版本# cat /proc/cpuinfo # 查看CPU信息# hostname # 查看计算机名# lspci -tv # 列出所有PCI设备# lsusb -tv

【小迪安全笔记 V2022 】信息打点9~11

第9天 信息打点-CDN绕过篇&漏洞回链8接口探针&全网扫指&反向件 知识点: 0、CDN知识-工作原理及阻碍 1、CDN配置-域名&区域&类型 2、CDN绕过-靠谱十余种技战法 3、CDN绑定-HOSTS绑定指向访问 CDN 是构建在数据网络上的一种分布式的内容分发网。 CDN的作用是采用流媒体服务器集群技术,克服单机系统输出带宽及并发能力不足的缺点,可极大提升系统支持的并发流数目,减少或避

Weex入门教程之4,获取当前全局环境变量和配置信息(屏幕高度、宽度等)

$getConfig() 获取当前全局环境变量和配置信息。 Returns: config (object): 配置对象;bundleUrl (string): bundle 的 url;debug (boolean): 是否是调试模式;env (object): 环境对象; weexVersion (string): Weex sdk 版本;appName (string): 应用名字;

嵌入式技术的核心技术有哪些?请详细列举并解释每项技术的主要功能和应用场景。

嵌入式技术的核心技术包括处理器技术、IC技术和设计/验证技术。 1. 处理器技术    通用处理器:这类处理器适用于不同类型的应用,其主要特征是存储程序和通用的数据路径,使其能够处理各种计算任务。例如,在智能家居中,通用处理器可以用于控制和管理家庭设备,如灯光、空调和安全系统。    单用途处理器:这些处理器执行特定程序,如JPEG编解码器,专门用于视频信息的压缩或解压。在数字相机中,单用途

Python批量读取身份证信息录入系统和重命名

前言 大家好, 如果你对自动化处理身份证图片感兴趣,可以尝试以下操作:从身份证图片中快速提取信息,填入表格并提交到网页系统。如果你无法完成这个任务,我们将在“Python自动化办公2.0”课程中详细讲解实现整个过程。 实现过程概述: 模块与功能: re 模块:用于从 OCR 识别出的文本中提取所需的信息。 日期模块:计算年龄。 pandas:处理和操作表格数据。 PaddleOCR:百度的