本文主要是介绍李沐--动手学深度学习 ResNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1.理论
2.残差块
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l#ResNet沿用了VGG完整的3*3卷积层设计.残差块的实现如下:
#此代码生成两种类型的网络:
#一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
#另一种是当use_1x1conv=True时,添加通过1*1卷积调整通道和分辨率。
class Residual(nn.Module):def __init__(self,input_channels,num_channels,use_1x1conv = False, strides = 1):super().__init__()self.conv1 = nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1,stride=strides)self.conv2 = nn.Conv2d(num_channels,num_channels,kernel_size=3,padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels,num_channels,kernel_size=1,stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self,X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)#下面来查看输入和输出形状一致的情况。
b1k = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = b1k(X)
print(Y.shape)
#也可以在增加输出通道数的同时,减半输出的高和宽
b1k = Residual(3,6,use_1x1conv=True,strides=2)
print(b1k(X).shape)
3.ResNet模型
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l#ResNet沿用了VGG完整的3*3卷积层设计.残差块的实现如下:
#此代码生成两种类型的网络:
#一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
#另一种是当use_1x1conv=True时,添加通过1*1卷积调整通道和分辨率。
class Residual(nn.Module):def __init__(self,input_channels,num_channels,use_1x1conv = False, strides = 1):super().__init__()self.conv1 = nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1,stride=strides)self.conv2 = nn.Conv2d(num_channels,num_channels,kernel_size=3,padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels,num_channels,kernel_size=1,stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self,X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)'''
#下面来查看输入和输出形状一致的情况。
b1k = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = b1k(X)
print(Y.shape)
#也可以在增加输出通道数的同时,减半输出的高和宽
b1k = Residual(3,6,use_1x1conv=True,strides=2)
print(b1k(X).shape)
'''#ResNet的前两层跟之前介绍的GoogLeNet中的一样,在输出通道数为64、步幅为2的7*7卷积层后,接步幅为2的3*3的最大汇聚层
#不同之处在于ResNet每个卷积层后增加了批量规范化层。
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#GoogLeNet在后面接了4个由Inception块组成的模块。
#ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。
#第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。
#之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
def resnet_block(input_channels,num_channels,num_residuals,first_block = False):b1k = []for i in range(num_residuals):if i == 0 and not first_block:b1k.append(Residual(input_channels,num_channels,use_1x1conv=True,strides=2))else:b1k.append(Residual(num_channels,num_channels))return b1k
#接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64,64,2,first_block=True))
b3 = nn.Sequential(*resnet_block(64,128,2))
b4 = nn.Sequential(*resnet_block(128,256,2))
b5 = nn.Sequential(*resnet_block(256,512,2))
#最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。
net = nn.Sequential(b1,b2,b3,b4,b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(),nn.Linear(512,10))#在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。
#在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。
X = torch.rand(size=(1,1,224,224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)
4.ResNet模型训练
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l#ResNet沿用了VGG完整的3*3卷积层设计.残差块的实现如下:
#此代码生成两种类型的网络:
#一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
#另一种是当use_1x1conv=True时,添加通过1*1卷积调整通道和分辨率。
class Residual(nn.Module):def __init__(self,input_channels,num_channels,use_1x1conv = False, strides = 1):super().__init__()self.conv1 = nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1,stride=strides)self.conv2 = nn.Conv2d(num_channels,num_channels,kernel_size=3,padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels,num_channels,kernel_size=1,stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self,X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)'''
#下面来查看输入和输出形状一致的情况。
b1k = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = b1k(X)
print(Y.shape)
#也可以在增加输出通道数的同时,减半输出的高和宽
b1k = Residual(3,6,use_1x1conv=True,strides=2)
print(b1k(X).shape)
'''#ResNet的前两层跟之前介绍的GoogLeNet中的一样,在输出通道数为64、步幅为2的7*7卷积层后,接步幅为2的3*3的最大汇聚层
#不同之处在于ResNet每个卷积层后增加了批量规范化层。
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#GoogLeNet在后面接了4个由Inception块组成的模块。
#ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。
#第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。
#之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
def resnet_block(input_channels,num_channels,num_residuals,first_block = False):b1k = []for i in range(num_residuals):if i == 0 and not first_block:b1k.append(Residual(input_channels,num_channels,use_1x1conv=True,strides=2))else:b1k.append(Residual(num_channels,num_channels))return b1k
#接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64,64,2,first_block=True))
b3 = nn.Sequential(*resnet_block(64,128,2))
b4 = nn.Sequential(*resnet_block(128,256,2))
b5 = nn.Sequential(*resnet_block(256,512,2))
#最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。
net = nn.Sequential(b1,b2,b3,b4,b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(),nn.Linear(512,10))'''
#在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。
#在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。
X = torch.rand(size=(1,1,224,224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)
'''#在Fashion-MNIST数据集上训练ResNet。
lr,num_epochs,batch_size = 0.05,10,256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=96)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
d2l.plt.show()
这篇关于李沐--动手学深度学习 ResNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!