李沐--动手学深度学习 ResNet

2024-08-27 23:20

本文主要是介绍李沐--动手学深度学习 ResNet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.理论

2.残差块

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l#ResNet沿用了VGG完整的3*3卷积层设计.残差块的实现如下:
#此代码生成两种类型的网络:
#一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
#另一种是当use_1x1conv=True时,添加通过1*1卷积调整通道和分辨率。
class Residual(nn.Module):def __init__(self,input_channels,num_channels,use_1x1conv = False, strides = 1):super().__init__()self.conv1 = nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1,stride=strides)self.conv2 = nn.Conv2d(num_channels,num_channels,kernel_size=3,padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels,num_channels,kernel_size=1,stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self,X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)#下面来查看输入和输出形状一致的情况。
b1k = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = b1k(X)
print(Y.shape)
#也可以在增加输出通道数的同时,减半输出的高和宽
b1k = Residual(3,6,use_1x1conv=True,strides=2)
print(b1k(X).shape)

3.ResNet模型

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l#ResNet沿用了VGG完整的3*3卷积层设计.残差块的实现如下:
#此代码生成两种类型的网络:
#一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
#另一种是当use_1x1conv=True时,添加通过1*1卷积调整通道和分辨率。
class Residual(nn.Module):def __init__(self,input_channels,num_channels,use_1x1conv = False, strides = 1):super().__init__()self.conv1 = nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1,stride=strides)self.conv2 = nn.Conv2d(num_channels,num_channels,kernel_size=3,padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels,num_channels,kernel_size=1,stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self,X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)'''
#下面来查看输入和输出形状一致的情况。
b1k = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = b1k(X)
print(Y.shape)
#也可以在增加输出通道数的同时,减半输出的高和宽
b1k = Residual(3,6,use_1x1conv=True,strides=2)
print(b1k(X).shape)
'''#ResNet的前两层跟之前介绍的GoogLeNet中的一样,在输出通道数为64、步幅为2的7*7卷积层后,接步幅为2的3*3的最大汇聚层
#不同之处在于ResNet每个卷积层后增加了批量规范化层。
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#GoogLeNet在后面接了4个由Inception块组成的模块。
#ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。
#第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。
#之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
def resnet_block(input_channels,num_channels,num_residuals,first_block = False):b1k = []for i in range(num_residuals):if i == 0 and not first_block:b1k.append(Residual(input_channels,num_channels,use_1x1conv=True,strides=2))else:b1k.append(Residual(num_channels,num_channels))return b1k
#接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64,64,2,first_block=True))
b3 = nn.Sequential(*resnet_block(64,128,2))
b4 = nn.Sequential(*resnet_block(128,256,2))
b5 = nn.Sequential(*resnet_block(256,512,2))
#最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。
net = nn.Sequential(b1,b2,b3,b4,b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(),nn.Linear(512,10))#在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。
#在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。
X = torch.rand(size=(1,1,224,224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)

4.ResNet模型训练

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l#ResNet沿用了VGG完整的3*3卷积层设计.残差块的实现如下:
#此代码生成两种类型的网络:
#一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。
#另一种是当use_1x1conv=True时,添加通过1*1卷积调整通道和分辨率。
class Residual(nn.Module):def __init__(self,input_channels,num_channels,use_1x1conv = False, strides = 1):super().__init__()self.conv1 = nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1,stride=strides)self.conv2 = nn.Conv2d(num_channels,num_channels,kernel_size=3,padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels,num_channels,kernel_size=1,stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self,X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)'''
#下面来查看输入和输出形状一致的情况。
b1k = Residual(3,3)
X = torch.rand(4,3,6,6)
Y = b1k(X)
print(Y.shape)
#也可以在增加输出通道数的同时,减半输出的高和宽
b1k = Residual(3,6,use_1x1conv=True,strides=2)
print(b1k(X).shape)
'''#ResNet的前两层跟之前介绍的GoogLeNet中的一样,在输出通道数为64、步幅为2的7*7卷积层后,接步幅为2的3*3的最大汇聚层
#不同之处在于ResNet每个卷积层后增加了批量规范化层。
b1 = nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),nn.BatchNorm2d(64),nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#GoogLeNet在后面接了4个由Inception块组成的模块。
#ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。
#第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。
#之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。
def resnet_block(input_channels,num_channels,num_residuals,first_block = False):b1k = []for i in range(num_residuals):if i == 0 and not first_block:b1k.append(Residual(input_channels,num_channels,use_1x1conv=True,strides=2))else:b1k.append(Residual(num_channels,num_channels))return b1k
#接着在ResNet加入所有残差块,这里每个模块使用2个残差块。
b2 = nn.Sequential(*resnet_block(64,64,2,first_block=True))
b3 = nn.Sequential(*resnet_block(64,128,2))
b4 = nn.Sequential(*resnet_block(128,256,2))
b5 = nn.Sequential(*resnet_block(256,512,2))
#最后,与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。
net = nn.Sequential(b1,b2,b3,b4,b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(),nn.Linear(512,10))'''
#在训练ResNet之前,让我们观察一下ResNet中不同模块的输入形状是如何变化的。
#在之前所有架构中,分辨率降低,通道数量增加,直到全局平均汇聚层聚集所有特征。
X = torch.rand(size=(1,1,224,224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t',X.shape)
'''#在Fashion-MNIST数据集上训练ResNet。
lr,num_epochs,batch_size = 0.05,10,256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=96)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
d2l.plt.show()

这篇关于李沐--动手学深度学习 ResNet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113070

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]