caffe绘制训练过程中的accuracy、loss曲线

2024-08-27 19:32

本文主要是介绍caffe绘制训练过程中的accuracy、loss曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练模型并保存日志文件

       首先建立一个训练数据的脚本文件train.sh,其内容如下,其中,2>&1   | tee examples/mnist/mnist_train_log.log 是log日志文件的保存目录。

#!/usr/bin/env sh  
set -e  TOOLS=./build/tools  $TOOLS/caffe train  --solver=examples/mnist/lenet_solver.prototxt 2>&1  | tee examples/mnist/mnist_train_log.log  

训练完成后,会在examples/mnist文件夹下生成mnist_train_log.log日志

绘制曲线

       首先将文件夹caffe/tools/extra下的parse_log.sh 、extract_seconds.py、plot_training_log.py.example复制到上一步log日志文件的保存目录下。

然后,将plot_training_log.py.example改为plot_training_log.py,并执行以下命令就可以绘制曲线:

python plot_training_log.py 6 train_loss.png mnist_train_log.log

caffe支持多种曲线绘制,指定不同的类型参数即可,具体参数如下:

Notes: 1. Supporting multiple logs. 2. Log file name must end with the lower-cased ".log". 
Supported chart types: 0: Test accuracy  vs. Iters 1: Test accuracy  vs. Seconds 2: Test loss  vs. Iters 3: Test loss  vs. Seconds 4: Train learning rate  vs. Iters 5: Train learning rate  vs. Seconds 6: Train loss  vs. Iters 7: Train loss  vs. Seconds 

 

遇到的问题:

问题1:

       刚开始的时候发现类型参数为0-3的时候,可以正常绘制曲线,但是类型参数为4-7的时候,出现下面的错误:

 

解决方法:

       打开生成的mnist_train_log.log.train文件后,发现确实是提取TrainingLoss数据有问题,如图1;后来按博客点击打开链接中的方法将parse_log.sh进行修改。对于parse-log.sh生成的文件mnist_train_log.log.train,caffe自带的parse-log.sh提取到的是第9列(第9个域),也就是带S/10的那些数,我将它改成第13个域,也就是loss及=符号后的数,真正的loss在第13列,如图2、3。

                                           图1

                                           图2

                                           图3

 

 

问题2:

       解决完上述问题后,类型参数为4-7的时候,还是不能绘制曲线,出现如下问题:IndexError: list index out of range

 

解决方法:

       群里大神帮忙找到问题了,原来是mnist_train_log.log.train中最后一行存在数据缺失问题,无奈,日志文件真的没有数据了,只能伪造一组数据了,如下图,红色圈中的就是我自己加的。但是,感觉这样做不好,关于这个问题,大家有遇到过没,怎么解决的,可以交流一下。

 

 

修改前的:

 

修改后的:

 

这篇关于caffe绘制训练过程中的accuracy、loss曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112568

相关文章

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

Python绘制土地利用和土地覆盖类型图示例详解

《Python绘制土地利用和土地覆盖类型图示例详解》本文介绍了如何使用Python绘制土地利用和土地覆盖类型图,并提供了详细的代码示例,通过安装所需的库,准备地理数据,使用geopandas和matp... 目录一、所需库的安装二、数据准备三、绘制土地利用和土地覆盖类型图四、代码解释五、其他可视化形式1.

SpringBoot整合kaptcha验证码过程(复制粘贴即可用)

《SpringBoot整合kaptcha验证码过程(复制粘贴即可用)》本文介绍了如何在SpringBoot项目中整合Kaptcha验证码实现,通过配置和编写相应的Controller、工具类以及前端页... 目录SpringBoot整合kaptcha验证码程序目录参考有两种方式在springboot中使用k