caffe绘制训练过程中的accuracy、loss曲线

2024-08-27 19:32

本文主要是介绍caffe绘制训练过程中的accuracy、loss曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

训练模型并保存日志文件

       首先建立一个训练数据的脚本文件train.sh,其内容如下,其中,2>&1   | tee examples/mnist/mnist_train_log.log 是log日志文件的保存目录。

#!/usr/bin/env sh  
set -e  TOOLS=./build/tools  $TOOLS/caffe train  --solver=examples/mnist/lenet_solver.prototxt 2>&1  | tee examples/mnist/mnist_train_log.log  

训练完成后,会在examples/mnist文件夹下生成mnist_train_log.log日志

绘制曲线

       首先将文件夹caffe/tools/extra下的parse_log.sh 、extract_seconds.py、plot_training_log.py.example复制到上一步log日志文件的保存目录下。

然后,将plot_training_log.py.example改为plot_training_log.py,并执行以下命令就可以绘制曲线:

python plot_training_log.py 6 train_loss.png mnist_train_log.log

caffe支持多种曲线绘制,指定不同的类型参数即可,具体参数如下:

Notes: 1. Supporting multiple logs. 2. Log file name must end with the lower-cased ".log". 
Supported chart types: 0: Test accuracy  vs. Iters 1: Test accuracy  vs. Seconds 2: Test loss  vs. Iters 3: Test loss  vs. Seconds 4: Train learning rate  vs. Iters 5: Train learning rate  vs. Seconds 6: Train loss  vs. Iters 7: Train loss  vs. Seconds 

 

遇到的问题:

问题1:

       刚开始的时候发现类型参数为0-3的时候,可以正常绘制曲线,但是类型参数为4-7的时候,出现下面的错误:

 

解决方法:

       打开生成的mnist_train_log.log.train文件后,发现确实是提取TrainingLoss数据有问题,如图1;后来按博客点击打开链接中的方法将parse_log.sh进行修改。对于parse-log.sh生成的文件mnist_train_log.log.train,caffe自带的parse-log.sh提取到的是第9列(第9个域),也就是带S/10的那些数,我将它改成第13个域,也就是loss及=符号后的数,真正的loss在第13列,如图2、3。

                                           图1

                                           图2

                                           图3

 

 

问题2:

       解决完上述问题后,类型参数为4-7的时候,还是不能绘制曲线,出现如下问题:IndexError: list index out of range

 

解决方法:

       群里大神帮忙找到问题了,原来是mnist_train_log.log.train中最后一行存在数据缺失问题,无奈,日志文件真的没有数据了,只能伪造一组数据了,如下图,红色圈中的就是我自己加的。但是,感觉这样做不好,关于这个问题,大家有遇到过没,怎么解决的,可以交流一下。

 

 

修改前的:

 

修改后的:

 

这篇关于caffe绘制训练过程中的accuracy、loss曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112568

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

PLsql Oracle 下载安装图文过程详解

《PLsqlOracle下载安装图文过程详解》PL/SQLDeveloper是一款用于开发Oracle数据库的集成开发环境,可以通过官网下载安装配置,并通过配置tnsnames.ora文件及环境变... 目录一、PL/SQL Developer 简介二、PL/SQL Developer 安装及配置详解1.下

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

springboot启动流程过程

《springboot启动流程过程》SpringBoot简化了Spring框架的使用,通过创建`SpringApplication`对象,判断应用类型并设置初始化器和监听器,在`run`方法中,读取配... 目录springboot启动流程springboot程序启动入口1.创建SpringApplicat

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

Linux部署jar包过程

《Linux部署jar包过程》文章介绍了在Linux系统上部署Java(jar)包时需要注意的几个关键点,包括统一JDK版本、添加打包插件、修改数据库密码以及正确执行jar包的方法... 目录linux部署jar包1.统一jdk版本2.打包插件依赖3.修改密码4.执行jar包总结Linux部署jar包部署

SpringBoot 整合 Grizzly的过程

《SpringBoot整合Grizzly的过程》Grizzly是一个高性能的、异步的、非阻塞的HTTP服务器框架,它可以与SpringBoot一起提供比传统的Tomcat或Jet... 目录为什么选择 Grizzly?Spring Boot + Grizzly 整合的优势添加依赖自定义 Grizzly 作为

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

springboot整合gateway的详细过程

《springboot整合gateway的详细过程》本文介绍了如何配置和使用SpringCloudGateway构建一个API网关,通过实例代码介绍了springboot整合gateway的过程,需要... 目录1. 添加依赖2. 配置网关路由3. 启用Eureka客户端(可选)4. 创建主应用类5. 自定