hadoop2提交到Yarn: Mapreduce执行过程分析2

2024-08-27 11:58

本文主要是介绍hadoop2提交到Yarn: Mapreduce执行过程分析2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文

问题导读:
1.hadoop哪些数据类型,是如何与Java数据类型对应的?
2.ApplicationMaster什么时候启动?
3.YarnChild进程什么时候产生?
4.如果在recuece的情况下,map任务完成暂总任务的多少百分比?
5.run的执行步骤是什么?
6.哪个方法来执行具体的map任务?
7.获取配置信息为哪个类?
8.TaskAttemptContextImpl还增加了什么信息?







4.3 Map类

   创建Map类和map函数,map函数是org.apache.hadoop.mapreduce.Mapper类中的定义的,当处理每一个键值对的时候,都要调用一次map方法,用户需要覆写此方法。此外还有setup方法和cleanup方法。map方法是当map任务开始运行的时候调用一次,cleanup方法是整个map任务结束的时候运行一次。
4.3.1 Map介绍
   Mapper类是一个泛型类,带有4个参数(输入的键,输入的值,输出的键,输出的值)。在这里输入的key为Object(默认是行),输入的值为Text(hadoop中的String类型),输出的key为Text(关键字)和输出的值为IntWritable(hadoop中的int类型)。以上所有hadoop数据类型和java的数据类型都很相像,除了它们是针对网络序列化而做的特殊优化。
   MapReduce中的类似于IntWritable的类型还有如下几种:
BooleanWritable:标准布尔型数值、ByteWritable:单字节数值、DoubleWritable:双字节数值、FloatWritable:浮点数、IntWritable:整型数、LongWritable:长整型数、Text:使用UTF8格式存储的文本(类似java中的String)、NullWritable:当<key, value>中的key或value为空时使用。
这些都是实现了WritableComparable接口:
    Map任务是一类将输入记录集转换为中间格式记录集的独立任务。 Mapper类中的map方法将输入键值对(key/value pair)映射到一组中间格式的键值对集合。这种转换的中间格式记录集不需要与输入记录集的类型一致。一个给定的输入键值对可以映射成0个或多个输出键值对。
  1. StringTokenizer itr = new StringTokenizer(value.toString());
  2. while (itr.hasMoreTokens()) {
  3. word.set(itr.nextToken());
  4. context.write(word, one);
  5. }
复制代码

这里将输入的行进行解析分割之后,利用Context的write方法进行保存。而Context是实现了MapContext接口的一个抽象内部类。此处把解析出的每个单词作为key,将整形1作为对应的value,表示此单词出现了一次。map就是一个分的过程,reduce就是合的过程。Map任务的个数和前面的split的数目对应,作为map函数的输入。Map任务的具体执行见下一小节。
4.3.2 Map任务分析
    Map任务被提交到Yarn后,被ApplicationMaster启动,任务的形式是YarnChild进程,在其中会执行MapTask的run方法。无论是MapTask还是ReduceTask都是继承的Task这个抽象类。
    run方法的执行步骤有:
Step1:
    判断是否有Reduce任务,如果没有的话,Map任务结束,就整个提交的作业结束;如果有的话,当Map任务完成的时候设置当前进度为66.7%,Sort完成的时候设置进度为33.3%。
Step2:
    启动TaskReporter线程,用于更新当前的状态。
Step3:
   初始化任务,设置任务的当前状态为RUNNING,设置输出目录等。
Step4:
    判断当前是否是jobCleanup任务、jobSetup任务、taskCleanup任务及相应的处理。
Step5:
   调用runNewMapper方法,执行具体的map。
Step6:
   作业完成之后,调用done方法,进行任务的清理、计数器更新、任务状态更新等。
4.3.3 runNewMapper分析
    下面我们来看看这个runNewMapper方法。代码如下:
  1. private <INKEY,INVALUE,OUTKEY,OUTVALUE>
  2.   void runNewMapper(final JobConf job,
  3.                     final TaskSplitIndex splitIndex,
  4.                     final TaskUmbilicalProtocol umbilical,
  5.                     TaskReporter reporter
  6.                     ) throws IOException, ClassNotFoundException,
  7.                              InterruptedException {
  8.     // make a task context so we can get the classes
  9.     org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =  new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, getTaskID(), reporter);

  10.     // make a mapper 
  11.        org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper = (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
  12.     ReflectionUtils.newInstance(taskContext.getMapperClass(), job);

  13.     // make the input format org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat = (org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>) 
  14.     ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job); 
  15.     // rebuild the input split
  16.     org.apache.hadoop.mapreduce.InputSplit split = null;20 
  17.     split = getSplitDetails(new path(splitIndex.getSplitLocation()), splitIndex.getStartOffset());

  18.     LOG.info("Processing split: " + split);
  19.     org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =  new NewTrackingRecordReader<INKEY,INVALUE>        (split, inputFormat, reporter, taskContext);   

  20.     job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
  21.     org.apache.hadoop.mapreduce.RecordWriter output = null;   

  22.     // get an output object
  23.     if (job.getNumReduceTasks() == 0) {
  24.       output =  new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
  25.     } else {
  26.       output = new NewOutputCollector(taskContext, job, umbilical, reporter);
  27.     }

  28.     org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE>   mapContext =  new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(), input, output,  committer, reporter, split);
  29.     org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context  mapperContext =  new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(mapContext); 

  30.     try {
  31.       input.initialize(split, mapperContext);
  32.       mapper.run(mapperContext);
  33.       mapPhase.complete();
  34.       setPhase(TaskStatus.Phase.SORT);
  35.       statusUpdate(umbilical);
  36.       input.close();
  37.       input = null;
  38.       output.close(mapperContext);
  39.       output = null;
  40.     } finally {
  41.       closeQuietly(input);
  42.       closeQuietly(output, mapperContext);
  43.     }
  44.   }
复制代码

此方法的主要执行流程是:
Step1:
获取配置信息类对象TaskAttemptContextImpl、自己开发的Mapper的实例mapper、用户指定的InputFormat对象 (默认是TextInputFormat)、任务对应的分片信息split。
其中TaskAttemptContextImpl类实现TaskAttemptContext接口,而TaskAttemptContext接口又继承于JobContext和Progressable接口,但是相对于JobContext增加了一些有关task的信息。通过TaskAttemptContextImpl对象可以获得很多与任务执行相关的类,比如用户定义的Mapper类,InputFormat类等。
Step2:
    根据inputFormat构建一个NewTrackingRecordReader对象,这个对象中的RecordReader<K,V> real是LineRecordReader,用于读取分片中的内容,传递给Mapper的map方法做处理的。
Step3:
然后创建org.apache.hadoop.mapreduce.RecordWriter对象,作为任务的输出,如果没有reducer,就设置此RecordWriter对象为NewDirectOutputCollector(taskContext, job, umbilical, reporter)直接输出到HDFS上;如果有reducer,就设置此RecordWriter对象为NewOutputCollector(taskContext, job, umbilical, reporter)作为输出。
NewOutputCollector是有reducer的作业的map的输出。这个类的主要包含的对象是MapOutputCollector<K,V> collector,是利用反射工具构造出来的:
  1. ReflectionUtils.newInstance(job.getClass(JobContext.MAP_OUTPUT_COLLECTOR_CLASS_ATTR, MapOutputBuffer.class, MapOutputCollector.class), job);
复制代码

如果Reduce的个数大于1,则实例化org.apache.hadoop.mapreduce.Partitioner<K,V> (默认是HashPartitioner.class),用来对mapper的输出数据进行分区,即数据要汇总到哪个reducer上,NewOutputCollector的write方法会调用collector.collect(key, value,partitioner.getPartition(key, value, partitions));否则设置分区个数为0。
Step4:
打开输入文件(构建一个LineReader对象,在这实现文件内容的具体读)并且将文件指针指向文件头。由LineRecordReader的initialize方法完成。
实际上读文件内容的是类中的LineReader对象in,该对象在initialize方法中进行了初始化,会根据输入文件的文件类型(压缩或不压缩)传入相应输入流对象。LineReader会从输入流对象中通过:
in.readLine(new Text(), 0, maxBytesToConsume(start));
方法每次读取一行放入Text对象str中,并返回读取数据的长度。
LineRecordReader.nextKeyValue()方法会设置两个对象key和value,key是一个偏移量指的是当前这行数据在输入文件中的偏移量(注意这个偏移量可不是对应单个分片内的偏移量,而是针对整个文中的偏移量),value是通过LineReader的对象in读取的一行内容:
  1. in.readLine(value, maxLineLength, Math.max(maxBytesToConsume(pos), maxLineLength));
复制代码

如果没有数据可读了,这个方法会返回false,否则true。
另外,getCurrentKey()和getCurrentValue()是获取当前的key和value,调用这俩方法之前需要先调用nextKeyValue()为key和value赋新值,否则会重复。
这样就跟org.apache.hadoop.mapreduce.Mapper中的run方法关联起来了。
Step5:
    执行org.apache.hadoop.mapreduce.Mapper的run方法。
  1. public void run(Context context) throws IOException, InterruptedException { 
  2.     setup(context); 
  3.     try { 
  4.       while (context.nextKeyValue()) { 
  5.         map(context.getCurrentKey(), context.getCurrentValue(), context); 
  6.       } 
  7.     } finally { 
  8.       cleanup(context); 
  9.     } 
  10.   }
复制代码

Step5.1:
首先会执行setup方法,用于设定用户自定义的一些参数等,方便在下面的操作步骤中读取。参数是设置在Context中的。此对象的初始化在MapTask类中的runNewMapper方法中:
  1. org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context
  2.          mapperContext = new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(mapContext);
复制代码
会将LineRecordReader的实例对象和NewOutputCollector的实例对象传进去,下面的nextKeyValue()、getCurrentValue()、getCurrentKey()会调用reader的相应方法,从而实现了Mapper.run方法中的nextKeyValue()不断获取key和value。
Step5.2:
循环中的map方法就是用户自定的map。map方法逻辑处理完之后,最后都会有context.write(K,V)方法用来将计算数据输出。此write方法最后调用的是NewOutputCollector.write方法,write方法会调用MapOutputBuffer.collect(key, value,partitioner.getPartition(key, value, partitions))方法,用于汇报进度、序列化数据并将其缓存等,主要是里面还有个Spill的过程,下一小节会详细介绍。
Step5.3:
当读完数据之后,会调用cleanup方法来做一些清理工作,这点我们同样可以利用,我们可以根据自己的需要重写cleanup方法。
Step6:
最后是输出流的关闭output.close(mapperContext),该方法会执行MapOutputBuffer.flush()操作会将剩余的数据也通过sortAndSpill()方法写入本地文件,并在最后调用mergeParts()方法合并所有spill文件。sortAndSpill方法在4.3.4小节中会介绍。
4.3.4 Spill分析
Spill的汉语意思是溢出,spill处理就是溢出写。怎么个溢出法呢?Spill过程包括输出、排序、溢写、合并等步骤,有点复杂,如图所示:
    每个Map任务不断地以<key, value>对的形式把数据输出到在内存中构造的一个环形数据结构中。使用环形数据结构是为了更有效地使用内存空间,在内存中放置尽可能多的数据。
这个数据结构其实就是个字节数组,叫kvbuffer,这里面不只有<key, value>数据,还放置了一些索引数据,并且给放置索引数据的区域起了一个kvmeta的别名。
  1.   kvbuffer = new byte[maxMemUsage];
  2.       bufvoid = kvbuffer.length;
  3.       kvmeta = ByteBuffer.wrap(kvbuffer).order(ByteOrder.nativeOrder()).asIntBuffer();
  4.       setEquator(0);
  5.       bufstart = bufend = bufindex = equator;
  6.       kvstart = kvend = kvindex;
复制代码

kvmeta是对记录Record<key, value>在kvbuffer中的索引,是个四元组,包括:value的起始位置、key的起始位置、partition值、value的长度,占用四个Int长度,kvmeta的存放指针kvindex每次都是向下跳四步,然后再向上一个坑一个坑地填充四元组的数据。比如kvindex初始位置是-4,当第一个<key, value>写完之后,(kvindex+0)的位置存放value的起始位置、(kvindex+1)的位置存放key的起始位置、(kindex+2)的位置存放partition的值、(kvindex+3)的位置存放value的长度,然后kvindex跳到-8位置,等第二个<key, value>和索引写完之后,kvindex跳到-32位置。
<key, value>数据区域和索引数据区域在kvbuffer中是相邻不重叠的两个区域,用一个分界点来划分两者,而分割点是变化的,每次Spill之后都会更新一次。初始的分界点是0,<key, value>数据的存储方向是向上增长,索引数据的存储方向是向下增长,如图所示:
其中,kvbuffer的大小maxMemUsage的默认是100M。涉及到的变量有点多:
(1)kvstart是有效记录开始的下标;
(2)kvindex是下一个可做记录的位置;
(3)kvend在开始Spill的时候它会被赋值为kvindex的值,Spill结束时,它的值会被赋给kvstart,这时候kvstart==kvend。这就是说,如果kvstart不等于kvend,系统正在spill,否则,kvstart==kvend,系统处于普通工作状态;
(4)bufvoid,用于表明实际使用的缓冲区结尾;
(5)bufmark,用于标记记录的结尾;
(6)bufindex初始值为0,一个Int型的key写完之后,bufindex增长为4,一个Int型的value写完之后,bufindex增长为8
在kvindex和bufindex之间(包括equator节点)的那一坨数据就是未被Spill的数据。如果这部分数据所占用的空间大于等于Spill的指定百分比(默认是80%),则开始调用startSpill方法进行溢写。对应的方法为:
  1. private void startSpill() {

  2.       assert !spillInProgress;

  3.       kvend = (kvindex + NMETA) % kvmeta.capacity();

  4.       bufend = bufmark;

  5.       spillInProgress = true;

  6.       LOG.info("Spilling map output");

  7.       LOG.info("bufstart = " + bufstart + "; bufend = " + bufmark +

  8.                "; bufvoid = " + bufvoid);

  9.       LOG.info("kvstart = " + kvstart + "(" + (kvstart * 4) +

  10.                "); kvend = " + kvend + "(" + (kvend * 4) +

  11.                "); length = " + (distanceTo(kvend, kvstart,

  12.                      kvmeta.capacity()) + 1) + "/" + maxRec);

  13.       spillReady.signal();

  14.     }
复制代码

这里会触发信号量,使得在MapTask类的init方法中正在等待的SpillThread线程继续运行。
  1. while (true) { 
  2.             spillDone.signal(); 
  3.             while (!spillInProgress) { 
  4.               spillReady.await(); 
  5.             }

  6.             try {
  7.               spillLock.unlock();
  8.               sortAndSpill(); 
  9.             } catch (Throwable t) { 
  10.               sortSpillException = t; 
  11.             } finally { 
  12.               spillLock.lock(); 
  13.               if (bufend < bufstart) { 
  14.                 bufvoid = kvbuffer.length; 
  15.               }

  16.               kvstart = kvend; 
  17.               bufstart = bufend; 
  18.               spillInProgress = false; 
  19.             } 
  20.           }
复制代码

继续调用sortAndSpill方法,此方法负责将buf中的数据刷到磁盘。主要是根据排过序的kvmeta把每个partition的<key, value>数据写到文件中,一个partition对应的数据搞完之后顺序地搞下个partition,直到把所有的partition遍历完(partiton的个数就是reduce的个数)。
Step1:
先计算写入文件的大小;
  1. final long size = (bufend >= bufstart? bufend - bufstart: (bufvoid - bufend) + bufstart) +partitions * APPROX_HEADER_LENGTH;
复制代码
Step2:
    然后获取写到本地(非HDFS)文件的文件名,会有一个编号,例如output/spill2.out;命名格式对应的代码为:
  1. return lDirAlloc.getLocalPathForWrite(MRJobConfig.OUTPUT + "/spill"

  2.          + spillNumber + ".out", size, getConf());
复制代码

Step3:
使用快排对缓冲区kvbuffe中区间[bufstart,bufend)内的数据进行排序,先按分区编号partition进行升序,然后按照key进行升序。这样经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序;
Step4:
构建一个IFile.Writer对象将输出流传进去,输出到指定的文件当中,这个对象支持行级的压缩。
  1. writer = new Writer<K, V>(job, out, keyClass, valClass, codec, spilledRecordsCounter);
复制代码

如果用户设置了Combiner(实际上是一个Reducer),则写入文件之前会对每个分区中的数据进行一次聚集操作,通过combinerRunner.combine(kvIter, combineCollector)实现,进而会执行reducer.run方法,只不过输出和正常的reducer不一样而已,这里最终会调用IFile.Writer的append方法实现本地文件的写入。
Step5:
将元数据信息写到内存索引数据结构SpillRecord中。如果内存中索引大于1MB,则写到文件名类似于output/spill2.out.index的文件中,“2”就是当前Spill的次数。
  1. if (totalIndexCacheMemory >= indexCacheMemoryLimit) {

  2.           // create spill index file

  3.           Path indexFilename =

  4.               mapOutputFile.getSpillIndexFileForWrite(numSpills, partitions

  5.                   * MAP_OUTPUT_INDEX_RECORD_LENGTH);

  6.           spillRec.writeToFile(indexFilename, job);

  7.         } else {

  8.           indexCacheList.add(spillRec);

  9.           totalIndexCacheMemory +=

  10.             spillRec.size() * MAP_OUTPUT_INDEX_RECORD_LENGTH;

  11.         }
复制代码

index文件中不光存储了索引数据,还存储了crc32的校验数据。index文件不一定在磁盘上创建,如果内存(默认1M空间)中能放得下就放在内存中。
out文件、index文件和partition数据文件的对应关系为:
索引文件的信息主要包括partition的元数据的偏移量、大小、压缩后的大小等。
Step6:
    Spill结束的时候,会调用resetSpill方法进行重置。
  1. private void resetSpill() {

  2.       final int e = equator;

  3.       bufstart = bufend = e;

  4.       final int aligned = e - (e % METASIZE);

  5.       // set start/end to point to first meta record

  6.       // Cast one of the operands to long to avoid integer overflow

  7.       kvstart = kvend = (int)

  8.         (((long)aligned - METASIZE + kvbuffer.length) % kvbuffer.length) / 4;

  9.       LOG.info("(RESET) equator " + e + " kv " + kvstart + "(" +

  10.         (kvstart * 4) + ")" + " kvi " + kvindex + "(" + (kvindex * 4) + ")");

  11.     }
复制代码

也就是取kvbuffer中剩余空间的中间位置,用这个位置设置为新的分界点。
4.3.5 合并
    Map任务如果输出数据量很大,可能会进行好几次Spill,out文件和Index文件会产生很多,分布在不同的磁盘上。这时候就需要merge操作把这些文件进行合并。
Merge会从所有的本地目录上扫描得到Index文件,然后把索引信息存储在一个列表里,最后根据列表来创建一个叫file.out的文件和一个叫file.out.Index的文件用来存储最终的输出和索引。
每个artition都应一个段列表,记录所有的Spill文件中对应的这个partition那段数据的文件名、起始位置、长度等等。所以首先会对artition对应的所有的segment进行合并,合并成一个segment。当这个partition对应很多个segment时,会分批地进行合并,类似于堆排序。最终的索引数据仍然输出到Index文件中。对应mergeParts方法。
4.3.6 相关配置选项
    Map的东西大概的就这么多。主要是读取数据然后写入内存缓冲区,缓存区满足条件就会快排,并设置partition,然后Spill到本地文件和索引文件;如果有combiner,Spill之前也会做一次聚集操作,等数据跑完会通过归并合并所有spill文件和索引文件,如果有combiner,合并之前在满足条件后会做一次综合的聚集操作。map阶段的结果都会存储在本地中(如果有reducer的话),非HDFS。
在上面的分析,包括过程的梳理中,主要涉及到以下几种配置选项:
mapreduce.job.map.output.collector.class,默认为MapTask.MapOutputBuffer;
mapreduce.map.sort.spill.percent配置内存开始溢写的百分比值,默认为0.8;
mapreduce.task.io.sort.mb配置内存bufer的大小,默认是100mb;
map.sort.class配置排序实现类,默认为QuickSort,快速排序;
mapreduce.map.output.compress.codec配置map的输出的压缩处理程序;
mapreduce.map.output.compress配置map输出是否启用压缩,默认为false


这篇关于hadoop2提交到Yarn: Mapreduce执行过程分析2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111601

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

maven 编译构建可以执行的jar包

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」👈,「stormsha的知识库」👈持续学习,不断总结,共同进步,为了踏实,做好当下事儿~ 专栏导航 Python系列: Python面试题合集,剑指大厂Git系列: Git操作技巧GO

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',