分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出

本文主要是介绍分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出

文章目录

  • 一、Transformer-LSTM基本原理
      • 1. 模型原理
        • Transformer
        • LSTM
      • 2. 流程步骤
        • 1. 数据预处理
        • 2. Transformer编码器
        • 3. LSTM层
        • 4. 分类层
        • 5. 模型训练与评估
      • 3. 优势与应用
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出

一、Transformer-LSTM基本原理

要深入了解Transformer-LSTM组合模型用于分类预测的原理和流程,可以分为几个关键步骤:

1. 模型原理

Transformer
  • 自注意力机制:允许模型关注输入序列中的所有单词,计算其相关性。多头注意力可以并行计算多个注意力分量。
  • 位置编码:引入序列位置的信息,因为Transformer缺乏处理顺序的能力。
  • 编码器结构:通过堆叠多个编码器层来处理输入数据,通常包括自注意力机制和前馈神经网络。
LSTM
  • 处理长短期依赖:通过遗忘门、输入门和输出门来有效管理长期依赖关系。
  • 时间序列建模:适合捕捉序列数据中的动态变化和依赖关系。

2. 流程步骤

1. 数据预处理
  • 文本清洗:去除噪声,标准化文本。
  • 分词与嵌入:将文本转化为词嵌入(例如,使用Word2Vec、GloVe或BERT)。
2. Transformer编码器
  • 嵌入层:将输入序列转换为固定维度的嵌入表示。
  • 多头自注意力:并行计算多个注意力分量,捕捉不同的上下文信息。
  • 前馈网络:对每个位置的表示进行进一步处理和特征提取。
  • 层归一化与残差连接:帮助稳定训练和改进模型收敛性。
3. LSTM层
  • 处理Transformer输出:将Transformer的输出作为LSTM的输入。
  • LSTM单元:捕捉序列数据的时间依赖性,增强对长期依赖关系的建模。
4. 分类层
  • 全连接层:将LSTM的输出映射到目标类别的维度。
  • 激活函数:如ReLU,加入非线性变换。
  • 输出层:使用softmax(多分类)或sigmoid(二分类)函数将模型输出转换为预测概率。
5. 模型训练与评估
  • 损失函数:通常使用交叉熵损失函数。
  • 优化器:选择合适的优化算法(如Adam、SGD)进行训练。
  • 评估指标:如准确率、F1分数等,用于评估模型的性能。

3. 优势与应用

  • Transformer:处理长距离依赖关系、全局信息。
  • LSTM:处理时间序列中的局部和长期依赖。
  • 组合优势:通过结合Transformer的全局特征捕捉能力和LSTM的时间序列处理能力,提高分类任务的准确性和鲁棒性。

二、实验结果

在这里插入图片描述

在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109913

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Colorama库美化终端输出的操作示例

《Python使用Colorama库美化终端输出的操作示例》在开发命令行工具或调试程序时,我们可能会希望通过颜色来区分重要信息,比如警告、错误、提示等,而Colorama是一个简单易用的Python库... 目录python Colorama 库详解:终端输出美化的神器1. Colorama 是什么?2.

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram