分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出

本文主要是介绍分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出

文章目录

  • 一、Transformer-LSTM基本原理
      • 1. 模型原理
        • Transformer
        • LSTM
      • 2. 流程步骤
        • 1. 数据预处理
        • 2. Transformer编码器
        • 3. LSTM层
        • 4. 分类层
        • 5. 模型训练与评估
      • 3. 优势与应用
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出

一、Transformer-LSTM基本原理

要深入了解Transformer-LSTM组合模型用于分类预测的原理和流程,可以分为几个关键步骤:

1. 模型原理

Transformer
  • 自注意力机制:允许模型关注输入序列中的所有单词,计算其相关性。多头注意力可以并行计算多个注意力分量。
  • 位置编码:引入序列位置的信息,因为Transformer缺乏处理顺序的能力。
  • 编码器结构:通过堆叠多个编码器层来处理输入数据,通常包括自注意力机制和前馈神经网络。
LSTM
  • 处理长短期依赖:通过遗忘门、输入门和输出门来有效管理长期依赖关系。
  • 时间序列建模:适合捕捉序列数据中的动态变化和依赖关系。

2. 流程步骤

1. 数据预处理
  • 文本清洗:去除噪声,标准化文本。
  • 分词与嵌入:将文本转化为词嵌入(例如,使用Word2Vec、GloVe或BERT)。
2. Transformer编码器
  • 嵌入层:将输入序列转换为固定维度的嵌入表示。
  • 多头自注意力:并行计算多个注意力分量,捕捉不同的上下文信息。
  • 前馈网络:对每个位置的表示进行进一步处理和特征提取。
  • 层归一化与残差连接:帮助稳定训练和改进模型收敛性。
3. LSTM层
  • 处理Transformer输出:将Transformer的输出作为LSTM的输入。
  • LSTM单元:捕捉序列数据的时间依赖性,增强对长期依赖关系的建模。
4. 分类层
  • 全连接层:将LSTM的输出映射到目标类别的维度。
  • 激活函数:如ReLU,加入非线性变换。
  • 输出层:使用softmax(多分类)或sigmoid(二分类)函数将模型输出转换为预测概率。
5. 模型训练与评估
  • 损失函数:通常使用交叉熵损失函数。
  • 优化器:选择合适的优化算法(如Adam、SGD)进行训练。
  • 评估指标:如准确率、F1分数等,用于评估模型的性能。

3. 优势与应用

  • Transformer:处理长距离依赖关系、全局信息。
  • LSTM:处理时间序列中的局部和长期依赖。
  • 组合优势:通过结合Transformer的全局特征捕捉能力和LSTM的时间序列处理能力,提高分类任务的准确性和鲁棒性。

二、实验结果

在这里插入图片描述

在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于分类预测|基于Transformer-LSTM的数据分类预测Matlab程序 多特征输入多类别输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109913

相关文章

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下