【深度学习】嘿马深度学习笔记第5篇:神经网络与tf.keras,学习目标【附代码文档】

2024-08-26 22:04

本文主要是介绍【深度学习】嘿马深度学习笔记第5篇:神经网络与tf.keras,学习目标【附代码文档】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本教程的知识点为:深度学习介绍 1.1 深度学习与机器学习的区别 TensorFlow介绍 2.4 张量 2.4.1 张量(Tensor) 2.4.1.1 张量的类型 TensorFlow介绍 1.2 神经网络基础 1.2.1 Logistic回归 1.2.1.1 Logistic回归 TensorFlow介绍 总结 每日作业 神经网络与tf.keras 1.3 神经网络基础 神经网络与tf.keras 1.3 Tensorflow实现神经网络 1.3.1 TensorFlow keras介绍 1.3.2 案例:实现多层神经网络进行时装分类 神经网络与tf.keras 1.4 深层神经网络 为什么使用深层网络 1.4.1 深层神经网络表示 卷积神经网络 3.1 卷积神经网络(CNN)原理 为什么需要卷积神经网络 原因之一:图像特征数量对神经网络效果压力 卷积神经网络 3.1 卷积神经网络(CNN)原理 为什么需要卷积神经网络 原因之一:图像特征数量对神经网络效果压力 卷积神经网络 2.2案例:CIFAR100类别分类 2.2.1 CIFAR100数据集介绍 2.2.2 API 使用 卷积神经网络 2.4 BN与神经网络调优 2.4.1 神经网络调优 2.4.1.1 调参技巧 卷积神经网络 2.4 经典分类网络结构 2.4.1 LeNet-5解析 2.4.1.1 网络结构 卷积神经网络 2.5 CNN网络实战技巧 2.5.1 迁移学习(Transfer Learning) 2.5.1.1 介绍 卷积神经网络 总结 每日作业 商品物体检测项目介绍 1.1 项目演示 商品物体检测项目介绍 3.4 Fast R-CNN 3.4.1 Fast R-CNN 3.4.1.1 RoI pooling YOLO与SSD 4.3 案例:SSD进行物体检测 4.3.1 案例效果 4.3.2 案例需求 商品检测数据集训练 5.2 标注数据读取与存储 5.2.1 案例:xml读取本地文件存储到pkl 5.2.1.1 解析结构

完整笔记资料代码->:https://gitee.com/yinuo112/AI/tree/master/深度学习/嘿马深度学习笔记/note.md

感兴趣的小伙伴可以自取哦~


全套教程部分目录:


部分文件图片:

神经网络与tf.keras

1.3 Tensorflow实现神经网络

学习目标

  • 目标

  • 掌握Tensorflow API的使用

  • 应用

  • 应用TF搭建一个分类模型

1.3.1 TensorFlow keras介绍

Keras 是一个用于构建和训练深度学习模型的高阶 API。它可用于快速设计原型、高级研究和生产,具有以下三个主要优势:

  • 方便用户使用,快速构建模型 Keras 具有针对常见用例做出优化的简单而一致的界面。它可针对用户错误提供切实可行的清晰反馈。
  • 模块化和可组 将可配置的构造块连接在一起就可以构建 Keras 模型,并且几乎不受限制。

  • 导入:

import tensorflow as tf
from tensorflow import keras
  • 1、获取相关现有数据集(无需自己去构造)
  • keras.datasets

    • mnist:手写数字
    • fashion_mnist:时尚分类
    • cifar10(100):10个类别分类
fashion_mnist = keras.datasets.fashion_mnist(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()print(train_images, train_labels)
  • 2、构建模型
  • 在 Keras 中,您可以通过组合层来构建模型。模型(通常)是由层构成的图。最常见的模型类型是层的堆叠,keras.layers中就有很多模型,如下图:可以在源码文件中找到
  • tf.keras.Sequential模型(layers如下)
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import DepthwiseConv2D
from tensorflow.python.keras.layers import Dot
from tensorflow.python.keras.layers import Dropout
from tensorflow.python.keras.layers import ELU
from tensorflow.python.keras.layers import Embedding
from tensorflow.python.keras.layers import Flatten
from tensorflow.python.keras.layers import GRU
from tensorflow.python.keras.layers import GRUCell
from tensorflow.python.keras.layers import LSTMCell
...
...
...
  • Flatten:将输入数据进行形状改变展开
  • Dense:添加一层神经元

  • Dense(units,activation=None,**kwargs)

    • units:神经元个数
    • activation:激活函数,参考tf.nn.relu,tf.nn.softmax,tf.nn.sigmoid,tf.nn.tanh
    • **kwargs:输入上层输入的形状,input_shape=()

tf.keras.Sequential构建类似管道的模型

model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)),keras.layers.Dense(128, activation=tf.nn.relu),keras.layers.Dense(10, activation=tf.nn.softmax)
])
  • 3、训练与评估

  • 通过调用model的 compile 方法去配置该模型所需要的训练参数以及评估方法。

  • model.compile(optimizer,loss=None,metrics=None, 准确率衡):配置训练相关参数

    • optimizer:梯度下降优化器(在keras.optimizers)
from tensorflow.python.keras.optimizers import Adadeltafrom tensorflow.python.keras.optimizers import Adagradfrom tensorflow.python.keras.optimizers import Adamfrom tensorflow.python.keras.optimizers import Adamaxfrom tensorflow.python.keras.optimizers import Nadamfrom tensorflow.python.keras.optimizers import Optimizerfrom tensorflow.python.keras.optimizers import RMSpropfrom tensorflow.python.keras.optimizers import SGDfrom tensorflow.python.keras.optimizers import deserializefrom tensorflow.python.keras.optimizers import getfrom tensorflow.python.keras.optimizers import serializefrom tensorflow.python.keras.optimizers import AdamOptimizer()
  * loss=None:损失类型,类型可以是字符串或者该function名字参考:
from tensorflow.python.keras.losses import KLDfrom tensorflow.python.keras.losses import KLD as kldfrom tensorflow.python.keras.losses import KLD as kullback_leibler_divergencefrom tensorflow.python.keras.losses import MAEfrom tensorflow.python.keras.losses import MAE as maefrom tensorflow.python.keras.losses import MAE as mean_absolute_errorfrom tensorflow.python.keras.losses import MAPEfrom tensorflow.python.keras.losses import MAPE as mapefrom tensorflow.python.keras.losses import MAPE as mean_absolute_percentage_errorfrom tensorflow.python.keras.losses import MSEfrom tensorflow.python.keras.losses import MSE as mean_squared_errorfrom tensorflow.python.keras.losses import MSE as msefrom tensorflow.python.keras.losses import MSLEfrom tensorflow.python.keras.losses import MSLE as mean_squared_logarithmic_errorfrom tensorflow.python.keras.losses import MSLE as mslefrom tensorflow.python.keras.losses import binary_crossentropyfrom tensorflow.python.keras.losses import categorical_crossentropyfrom tensorflow.python.keras.losses import categorical_hingefrom tensorflow.python.keras.losses import cosinefrom tensorflow.python.keras.losses import cosine as cosine_proximityfrom tensorflow.python.keras.losses import deserializefrom tensorflow.python.keras.losses import getfrom tensorflow.python.keras.losses import hingefrom tensorflow.python.keras.losses import logcoshfrom tensorflow.python.keras.losses import poissonfrom tensorflow.python.keras.losses import serializefrom tensorflow.python.keras.losses import sparse_categorical_crossentropyfrom tensorflow.python.keras.losses import squared_hinge
  * metrics=None, ['accuracy']
  • model.fit():进行训练

    • (x=None,y=None, batch_size=None,epochs=1,callbacks=None)

    • x:特征值:

1、Numpy array (or array-like), or a list of arrays2、A TensorFlow tensor, or a list of tensors3、`tf.data` dataset or a dataset iterator. Should return a tuple of either `(inputs, targets)` or `(inputs, targets, sample_weights)`.4、A generator or `keras.utils.Sequence` returning `(inputs, targets)` or `(inputs, targets, sample weights)`.
  * y:目标值* batch_size=None:批次大小* epochs=1:训练迭代次数* callbacks=None:添加回调列表(用于如tensorboard显示等)
model.compile(optimizer=tf.keras.optimizers.Adam(),loss='sparse_categorical_crossentropy',metrics=['accuracy'])model.fit(train_images, train_labels, epochs=5)model.evaluate(test_images, test_labels)

1.3.2 案例:实现多层神经网络进行时装分类

70000 张灰度图像,涵盖 10 个类别。以下图像显示了单件服饰在较低分辨率(28x28 像素)下的效果:

服装

1.3.2.1 需求:

标签类别
0T 恤衫/上衣
1裤子
2套衫
3裙子
4外套
5凉鞋
6衬衫
7运动鞋
8包包

1.3.2.2 步骤分析和代码实现:

  • 读取数据集:

  • 从datasets中获取相应的数据集,直接有训练集和测试集

class SingleNN(object):def __init__(self):(self.train, self.train_label), (self.test, self.test_label) = keras.datasets.fashion_mnist.load_data()
  • 进行模型编写

  • 双层:128个神经元,全连接层10个类别输出

class SingleNN(object):model = keras.Sequential([keras.layers.Flatten(input_shape=(28, 28)),keras.layers.Dense(128, activation=tf.nn.relu),keras.layers.Dense(10, activation=tf.nn.softmax)])

这里我们model只是放在类中,作为类的固定模型属性

激活函数的选择

涉及到网络的优化时候,会有不同的激活函数选择有一个问题是神经网络的隐藏层和输出单元用什么激活函数。之前我们都是选用 sigmoid 函数,但有时其他函数的效果会好得多,大多数通过实践得来,没有很好的解释性。

可供选用的激活函数有:

  • tanh 函数(the hyperbolic tangent function,双曲正切函数):

效果比 sigmoid 函数好,因为函数输出介于 -1 和 1 之间。

注 :tanh 函数存在和 sigmoid 函数一样的缺点:当 z 趋紧无穷大(或无穷小),导数的梯度(即函数的斜率)就趋紧于 0,这使得梯度算法的速度会减慢。

  • ReLU 函数(the rectified linear unit,修正线性单元)

当 z > 0 时,梯度始终为 1,从而提高神经网络基于梯度算法的运算速度,收敛速度远大于 sigmoid 和 tanh。然而当 z < 0 时,梯度一直为 0,但是实际的运用中,该缺陷的影响不是很大。

  • Leaky ReLU(带泄漏的 ReLU):

Leaky ReLU 保证在 z < 0 的时候,梯度仍然不为 0。理论上来说,Leaky ReLU 有 ReLU 的所有优点,但在实际操作中没有证明总是好于 ReLU,因此不常用。

为什么需要非线性的激活函数

使用线性激活函数和不使用激活函数、直接使用 Logistic 回归没有区别,那么无论神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,就成了最原始的感知器了。

a [ 1 ] = z [ 1 ] = W [ 1 ] x + b [ 1 ] a^{[1]} = z^{[1]} = W^{[1]}x+b^{[1]} a[1]=z[1]=W[1]x+b[1]

a [ 2 ] = z [ 2 ] = W [ 2 ] a [ 1 ] + b [ 2 ] {a}^{[2]}=z^{[2]} = W^{[2]}a^{[1]}+b^{[2]} a[2]=z[2]=W[2]a[1]+b[2]

那么这样的话相当于

a [ 2 ] = z [ 2 ] = W [ 2 ] ( W [ 1 ] x + b [ 1 ] ) + b [ 2 ] = ( W [ 2 ] W [ 1 ] ) x + ( W [ 2 ] b [ 1 ] + b [ 2 ] ) = w x + b {a}^{[2]}=z^{[2]} = W^{[2]}(W^{[1]}x+b^{[1]})+b^{[2]}=(W^{[2]}W^{[1]})x+(W^{[2]}b^{[1]}+b^{[2]})=wx+b a[2]=z[2]=W[2](W[1]x+b[1])+b[2]=(W[2]W[1])x+(W[2]b[1]+b[2])=wx+b

  • 编译、训练以及评估
def compile(self):SingleNN.model.compile(optimizer=tf.train.AdamOptimizer(),loss=tf.keras.losses.sparse_categorical_crossentropy,metrics=['accuracy'])return Nonedef fit(self):SingleNN.model.fit(self.train, self.train_label, epochs=5)return Nonedef evaluate(self):test_loss, test_acc = SingleNN.model.evaluate(self.test, self.test_label)print(test_loss, test_acc)return None

1.3.2.1 打印模型

  • model.summary():查看模型结构

1.3.2.2 手动保存和回复模型

  • 目的:防止训练长时间,出现意外导致重新训练
  • model.save_weights('./weights/my_model')
  • model.load_weights('./weights/my_model')
SingleNN.model.save_weights("./ckpt/SingleNN")def predict(self):# 直接使用训练过后的权重测试if os.path.exists("./ckpt/checkpoint"):SingleNN.model.load_weights("./ckpt/SingleNN")predictions = SingleNN.model.predict(self.test)print(np.argmax(predictions, 1))return

1.3.2.3 添加Tensorboard观察损失等情况

# 添加tensoboard观察tensorboard = keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=0,write_graph=True, write_images=True)SingleNN.model.fit(self.train, self.train_label, epochs=5, callbacks=[tensorboard])

这篇关于【深度学习】嘿马深度学习笔记第5篇:神经网络与tf.keras,学习目标【附代码文档】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109807

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav