遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理

本文主要是介绍遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

遥感-超分-多光谱数据集内容格式链接论文备注
MSRSD包括PleiadesWorldview-2WV-2)、Worldview-3WV-3)、Quickbird-2GeoEye-1DEIMOS等几个卫星获取的大多数公开可用的甚高分辨率(VHR)卫星图像\[2102.09351] A Comprehensive Review of Deep Learning-based Single Image Super-resolution (arxiv.org)A comprehensive review on deep learning based remote sensing image super-resolution methodsMulti-sensor remote sensing dataset 2022CVPR 主要包括VHR级空间分辨率,将图像制备为全色锐化的三条带
CAVE由中国科学院遥感与数字地球研究所开发的合成孔径雷达(SAR)和光学影像数据集ENVI\Single Image Super-Resolution of SAR Images Using a Generative Adversarial Network/
WorldViewDigitalGlobe公司运营的WorldView系列商业遥感卫星提供的高分辨率多光谱和全色影像数据GeoTIFF\Pansharpening of WorldView-3 satellite imagery using convolutional neural network/
Landsat由美国地质调查局(USGS)提供的Landsat卫星影像数据,包括可见光、近红外和热红外等多个波段GeoTIFF\Hyperspectral Image Super-Resolution: A Review/
Harvard Forest由哈佛大学提供的新英格兰地区森林多光谱影像数据GeoTIFF\Hyperspectral super-resolution by coupled spectral unmixing/
SPARCS包含7种类型的遥感地物类型,提取自 Landsat 8 OLI/TIRS,由University of Tennessee Knoxville2014年发布ENVISPARCS | RS-VLMs (irip-buaa.github.io)Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing/
NWPU-RESISC45The NWPU-RESISC45 remote sensing dataset consists of 45 classes of remote sensing scene data, with each class containing 700 images, totaling 31,500 images of size 256 × 256 RGB and spatial resolutions ranging from 0.2 to 30 m. These images from Google Earth are selected from more than 100 countries and regions. The 45 scenario categories are as follows: airplane, airport, baseball diamond, basketball court, beach, bridge, chaparral, church, circular farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course, ground track field, harbor, industrial area, intersection, island, lake, meadow, medium residential, mobile home park, mountain, overpass, palace, parking lot, railway, railway station, rectangular farmland, river, roundabout, runway, sea ice, ship, snowberg, sparse residential, stadium, storage tank, tennis court, terrace, thermal power station, and wetland.\Remote Sensing Image Scene Classification: Benchmark and State of the Art | IEEE Journals & Magazine | IEEE XploreRemote Sensing Image Scene Classification: Benchmark and State of the Art/
iSAIDiSAID: The iSAID dataset consists of 2806 images with different sizes and 655,451 annotated instances. Due to the large size of the original images in the iSAID dataset, we have divided them into 800×800800×800 image patches for training and testing. We have created the SR dataset using bicubic and Gaussian blur to get the LR image with 200×200200×200 sizes. The original training set is used as the training set for the SR task. Additionally, the validation set of iSAID is used as the test set for the SR task. The training set contains a total of 27,286 images and the test set contains a total of 9446 images.\CVPR 2019 Open Access Repository (thecvf.com)iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images/
RSSCN7草地、森林、农田、停车场、住宅区、工业区和河湖.jpghttps://hyper.ai/datasets/5440Deep learning based feature selection for remote sensing scene classification来源于不同季节和天气变化,并以不同的比例进行采样
AID\\AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification | IEEE Journals & Magazine | IEEE XploreAID: A benchmark data set for performance evaluation of aerial scene classification/
RHLAI\\Remote Sensing | Free Full-Text | NDSRGAN: A Novel Dense Generative Adversarial Network for Real Aerial Imagery Super-Resolution Reconstruction (mdpi.com)NDSRGAN: A Novel Dense Generative Adversarial Network for Real Aerial Imagery Super-Resolution Reconstruction/
DIV2KThe DIV2K dataset includes 800 training images, 100 validation images, and 100 test images, all of which have 2K resolution. We divided the images into 480 × 480 sub-images with non-overlapping regions, and obtained LR images through bicubic downsampling.\CVPR 2017 Open Access Repository (thecvf.com)NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study/
OLI2MSIThe OLI2MSI is a real-world remote sensing image dataset, containing 5225 training LR-HR image pairs and 100 test LR-HR image pairs. The HR images have 480 × 480 resolution and the LR images have a resolution of 180 × 180. The LR images are ground images with a spatial resolution of 30 m, captured by the Operational Land Imager Landsat-8 satellite, and the HR images are ground images with a spatial resolution of 10 m, captured by the Multispectral Instrument Sentinel-2 satellite. Since the original scale factor of the dataset is 3, we used bicubic to obtain LR images for other scale factors.\Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN | Journal of Remote Sensing (science.org)Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN/
the Kaggle open-source remote sensing competition dataset\\https://www.kaggle.com/c/draper-satellite-image-chronology/data//
遥感-超分-Pan数据集内容格式链接论文备注
WorldView-3\GeoTiff\Pansharpening of WorldView-3 Satellite Imagery Using Convolutional Neural Network/
QuickBird\GeoTiff\Pansharpening of QuickBird Satellite Imagery Using the Curvelet Transform/
GaoFen-2\GeoTiff\Pansharpening of GaoFen-2 Satellite Imagery Using Deep Learning/
IKONOSGeoEye公司运营的IKONOS商业高分辨率遥感卫星提供的全色和多光谱影像数据GeoTiff\Pansharpening of Multispectral IKONOS Images via IHS and PCA Transformations/
PléiadesCNES公司运营的Pléiades商业高分辨率遥感卫星提供的全色和多光谱影像数据GeoTiff\Pansharpening of Pléiades Satellite Imagery Using Guided Filtering/
PROBA-V由欧洲空间局运营的PROBA-V中分辨率植被监测卫星的全色和多光谱影像数据GeoTiff\PROBA-V Image Pansharpening Using Convolutional Neural Networks/
Sentinel-2由欧洲空间局运营的Sentinel-2高分辨率多光谱成像卫星的全色和多光谱影像数据GeoTiff\Pansharpening of Sentinel-2 Imagery Using Guided Filtering/
ZY-3由中国遥感卫星地面站提供的中国ZY-3高分辨率测绘型遥感卫星的全色和多光谱影像数据GeoTiff\ZY-3 Satellite Pansharpening Using Convolutional Neural Networks/
DubaiSat-2由阿联酋空间局运营的DubaiSat-2高分辨率遥感卫星的全色和多光谱影像数据GeoTiff\Pansharpening of DubaiSat-2 Imagery Using Deep Learning/
COWCCOWC: The COWC is a large dataset of annotated cars from overhead, which consists of images from Selwyn in New Zealand, Potsdam and Vaihingen in Germany, Columbus and Utah in the United States, and Toronto in Canada. We crop the image to 256×256256×256 and randomly select 80% images in Potsdam for training, 10% images in Potsdam for validating, and others for testing. The LR images of the COWC dataset have a size of 64×6464×64 and 32×3232×32, corresponding to ×4×4 and ×8×8 upscale factor SR tasks, respectively.\A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning | SpringerLinkA Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning/
UCMERCEDhe UCMERCED remote sensing dataset comprises 21 classes, each comprising 100 images, resulting in 2100 images of size 256 × 256 RGB and a spatial resolution of approximately 0.3 m. These are USGS aerial images from 21 U.S. regions. The 21 classes are as follows: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium density residential, mobile home park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts.\Bag-of-visual-words and spatial extensions for land-use classification | Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (acm.org)Bag-of-visual-words and spatial extensions for land-use classification/
遥感数据集内容格式链接论文备注
UCAS-AOD600 张飞机 & 310 张车辆图像.pnghttps://hyper.ai/datasets/5419Orientation Robust Object Detection in Aerial Images Using Deep Convolutional Neural Network用于飞机和车辆检测,数据集中物体方向分布均匀
Inria Aerial Image Labeling Dataset建筑和非建筑(语义分割)GeoTiffhttps://hyper.ai/datasets/5428\用于城市建筑物检测的遥感图像数据集
RSOD-Dataset飞机、操场、立交桥和油桶四类目标.jpghttps://hyper.ai/datasets/5425\用于遥感图像中物体检测的数据集
NWPU VHR-1011类,飞机、舰船、油罐、棒球场、网球场、篮球场、田径场、港口、桥梁和汽车.jpghttps://hyper.ai/datasets/5422\用于空间物体检测的 10 级地理遥感数据集
RSC11 Dataset包含11 类场景图像,密林、疏林、草原、港口、高层建筑、低层建筑、立交桥、铁路、居民区、道路、储罐.tifhttps://hyper.ai/datasets/5443\一个遥感影像数据集,来源于Google Earth的高分辨率遥感影像,空间分辨率为0.2
遥感资源大放送(下)| 11 个经典遥感数据集_遥感影像建筑物数据集-CSDN博客

这篇关于遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109590

相关文章

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

分辨率三兄弟LPI、DPI 和 PPI有什么区别? 搞清分辨率的那些事儿

《分辨率三兄弟LPI、DPI和PPI有什么区别?搞清分辨率的那些事儿》分辨率这个东西,真的是让人又爱又恨,为了搞清楚它,我可是翻阅了不少资料,最后发现“小7的背包”的解释最让我茅塞顿开,于是,我... 在谈到分辨率时,我们经常会遇到三个相似的缩写:PPI、DPI 和 LPI。虽然它们看起来差不多,但实际应用

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi