遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理

本文主要是介绍遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

遥感-超分-多光谱数据集内容格式链接论文备注
MSRSD包括PleiadesWorldview-2WV-2)、Worldview-3WV-3)、Quickbird-2GeoEye-1DEIMOS等几个卫星获取的大多数公开可用的甚高分辨率(VHR)卫星图像\[2102.09351] A Comprehensive Review of Deep Learning-based Single Image Super-resolution (arxiv.org)A comprehensive review on deep learning based remote sensing image super-resolution methodsMulti-sensor remote sensing dataset 2022CVPR 主要包括VHR级空间分辨率,将图像制备为全色锐化的三条带
CAVE由中国科学院遥感与数字地球研究所开发的合成孔径雷达(SAR)和光学影像数据集ENVI\Single Image Super-Resolution of SAR Images Using a Generative Adversarial Network/
WorldViewDigitalGlobe公司运营的WorldView系列商业遥感卫星提供的高分辨率多光谱和全色影像数据GeoTIFF\Pansharpening of WorldView-3 satellite imagery using convolutional neural network/
Landsat由美国地质调查局(USGS)提供的Landsat卫星影像数据,包括可见光、近红外和热红外等多个波段GeoTIFF\Hyperspectral Image Super-Resolution: A Review/
Harvard Forest由哈佛大学提供的新英格兰地区森林多光谱影像数据GeoTIFF\Hyperspectral super-resolution by coupled spectral unmixing/
SPARCS包含7种类型的遥感地物类型,提取自 Landsat 8 OLI/TIRS,由University of Tennessee Knoxville2014年发布ENVISPARCS | RS-VLMs (irip-buaa.github.io)Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing/
NWPU-RESISC45The NWPU-RESISC45 remote sensing dataset consists of 45 classes of remote sensing scene data, with each class containing 700 images, totaling 31,500 images of size 256 × 256 RGB and spatial resolutions ranging from 0.2 to 30 m. These images from Google Earth are selected from more than 100 countries and regions. The 45 scenario categories are as follows: airplane, airport, baseball diamond, basketball court, beach, bridge, chaparral, church, circular farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course, ground track field, harbor, industrial area, intersection, island, lake, meadow, medium residential, mobile home park, mountain, overpass, palace, parking lot, railway, railway station, rectangular farmland, river, roundabout, runway, sea ice, ship, snowberg, sparse residential, stadium, storage tank, tennis court, terrace, thermal power station, and wetland.\Remote Sensing Image Scene Classification: Benchmark and State of the Art | IEEE Journals & Magazine | IEEE XploreRemote Sensing Image Scene Classification: Benchmark and State of the Art/
iSAIDiSAID: The iSAID dataset consists of 2806 images with different sizes and 655,451 annotated instances. Due to the large size of the original images in the iSAID dataset, we have divided them into 800×800800×800 image patches for training and testing. We have created the SR dataset using bicubic and Gaussian blur to get the LR image with 200×200200×200 sizes. The original training set is used as the training set for the SR task. Additionally, the validation set of iSAID is used as the test set for the SR task. The training set contains a total of 27,286 images and the test set contains a total of 9446 images.\CVPR 2019 Open Access Repository (thecvf.com)iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images/
RSSCN7草地、森林、农田、停车场、住宅区、工业区和河湖.jpghttps://hyper.ai/datasets/5440Deep learning based feature selection for remote sensing scene classification来源于不同季节和天气变化,并以不同的比例进行采样
AID\\AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification | IEEE Journals & Magazine | IEEE XploreAID: A benchmark data set for performance evaluation of aerial scene classification/
RHLAI\\Remote Sensing | Free Full-Text | NDSRGAN: A Novel Dense Generative Adversarial Network for Real Aerial Imagery Super-Resolution Reconstruction (mdpi.com)NDSRGAN: A Novel Dense Generative Adversarial Network for Real Aerial Imagery Super-Resolution Reconstruction/
DIV2KThe DIV2K dataset includes 800 training images, 100 validation images, and 100 test images, all of which have 2K resolution. We divided the images into 480 × 480 sub-images with non-overlapping regions, and obtained LR images through bicubic downsampling.\CVPR 2017 Open Access Repository (thecvf.com)NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study/
OLI2MSIThe OLI2MSI is a real-world remote sensing image dataset, containing 5225 training LR-HR image pairs and 100 test LR-HR image pairs. The HR images have 480 × 480 resolution and the LR images have a resolution of 180 × 180. The LR images are ground images with a spatial resolution of 30 m, captured by the Operational Land Imager Landsat-8 satellite, and the HR images are ground images with a spatial resolution of 10 m, captured by the Multispectral Instrument Sentinel-2 satellite. Since the original scale factor of the dataset is 3, we used bicubic to obtain LR images for other scale factors.\Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN | Journal of Remote Sensing (science.org)Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN/
the Kaggle open-source remote sensing competition dataset\\https://www.kaggle.com/c/draper-satellite-image-chronology/data//
遥感-超分-Pan数据集内容格式链接论文备注
WorldView-3\GeoTiff\Pansharpening of WorldView-3 Satellite Imagery Using Convolutional Neural Network/
QuickBird\GeoTiff\Pansharpening of QuickBird Satellite Imagery Using the Curvelet Transform/
GaoFen-2\GeoTiff\Pansharpening of GaoFen-2 Satellite Imagery Using Deep Learning/
IKONOSGeoEye公司运营的IKONOS商业高分辨率遥感卫星提供的全色和多光谱影像数据GeoTiff\Pansharpening of Multispectral IKONOS Images via IHS and PCA Transformations/
PléiadesCNES公司运营的Pléiades商业高分辨率遥感卫星提供的全色和多光谱影像数据GeoTiff\Pansharpening of Pléiades Satellite Imagery Using Guided Filtering/
PROBA-V由欧洲空间局运营的PROBA-V中分辨率植被监测卫星的全色和多光谱影像数据GeoTiff\PROBA-V Image Pansharpening Using Convolutional Neural Networks/
Sentinel-2由欧洲空间局运营的Sentinel-2高分辨率多光谱成像卫星的全色和多光谱影像数据GeoTiff\Pansharpening of Sentinel-2 Imagery Using Guided Filtering/
ZY-3由中国遥感卫星地面站提供的中国ZY-3高分辨率测绘型遥感卫星的全色和多光谱影像数据GeoTiff\ZY-3 Satellite Pansharpening Using Convolutional Neural Networks/
DubaiSat-2由阿联酋空间局运营的DubaiSat-2高分辨率遥感卫星的全色和多光谱影像数据GeoTiff\Pansharpening of DubaiSat-2 Imagery Using Deep Learning/
COWCCOWC: The COWC is a large dataset of annotated cars from overhead, which consists of images from Selwyn in New Zealand, Potsdam and Vaihingen in Germany, Columbus and Utah in the United States, and Toronto in Canada. We crop the image to 256×256256×256 and randomly select 80% images in Potsdam for training, 10% images in Potsdam for validating, and others for testing. The LR images of the COWC dataset have a size of 64×6464×64 and 32×3232×32, corresponding to ×4×4 and ×8×8 upscale factor SR tasks, respectively.\A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning | SpringerLinkA Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning/
UCMERCEDhe UCMERCED remote sensing dataset comprises 21 classes, each comprising 100 images, resulting in 2100 images of size 256 × 256 RGB and a spatial resolution of approximately 0.3 m. These are USGS aerial images from 21 U.S. regions. The 21 classes are as follows: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium density residential, mobile home park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts.\Bag-of-visual-words and spatial extensions for land-use classification | Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (acm.org)Bag-of-visual-words and spatial extensions for land-use classification/
遥感数据集内容格式链接论文备注
UCAS-AOD600 张飞机 & 310 张车辆图像.pnghttps://hyper.ai/datasets/5419Orientation Robust Object Detection in Aerial Images Using Deep Convolutional Neural Network用于飞机和车辆检测,数据集中物体方向分布均匀
Inria Aerial Image Labeling Dataset建筑和非建筑(语义分割)GeoTiffhttps://hyper.ai/datasets/5428\用于城市建筑物检测的遥感图像数据集
RSOD-Dataset飞机、操场、立交桥和油桶四类目标.jpghttps://hyper.ai/datasets/5425\用于遥感图像中物体检测的数据集
NWPU VHR-1011类,飞机、舰船、油罐、棒球场、网球场、篮球场、田径场、港口、桥梁和汽车.jpghttps://hyper.ai/datasets/5422\用于空间物体检测的 10 级地理遥感数据集
RSC11 Dataset包含11 类场景图像,密林、疏林、草原、港口、高层建筑、低层建筑、立交桥、铁路、居民区、道路、储罐.tifhttps://hyper.ai/datasets/5443\一个遥感影像数据集,来源于Google Earth的高分辨率遥感影像,空间分辨率为0.2
遥感资源大放送(下)| 11 个经典遥感数据集_遥感影像建筑物数据集-CSDN博客

这篇关于遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109590

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav