OpenCV几何图像变换(11)极坐标转换函数warpPolar()的使用

2024-08-26 16:44

本文主要是介绍OpenCV几何图像变换(11)极坐标转换函数warpPolar()的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

函数将图像重映射到极坐标或半对数极坐标空间。

极坐标重映射参考
用以下转换来转换源图像:

d s t ( ρ , ϕ ) = s r c ( x , y ) dst(\rho , \phi ) = src(x,y) dst(ρ,ϕ)=src(x,y)
其中
I ⃗ = ( x − c e n t e r . x , y − c e n t e r . y ) ϕ = K a n g l e ⋅ angle ( I ⃗ ) ρ = { K l i n ⋅ magnitude ( I ⃗ ) 默认 K l o g ⋅ l o g e ( magnitude ( I ⃗ ) ) i f 半对数 \begin{array}{l} \vec{I} = (x - center.x, \;y - center.y) \\ \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\ \rho = \left\{\begin{matrix} Klin \cdot \texttt{magnitude} (\vec{I}) & 默认 \\ Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; 半对数 \\ \end{matrix}\right. \end{array} I =(xcenter.x,ycenter.y)ϕ=Kangleangle(I )ρ={Klinmagnitude(I )Klogloge(magnitude(I ))默认if半对数
并且
K a n g l e = d s i z e . h e i g h t / 2 Π K l i n = d s i z e . w i d t h / m a x R a d i u s K l o g = d s i z e . w i d t h / l o g e ( m a x R a d i u s ) \begin{array}{l} Kangle = dsize.height / 2\Pi \\ Klin = dsize.width / maxRadius \\ Klog = dsize.width / log_e(maxRadius) \\ \end{array} Kangle=dsize.height/2ΠKlin=dsize.width/maxRadiusKlog=dsize.width/loge(maxRadius)

线性与半对数映射
极坐标映射可以是线性的或半对数的。向标志中添加一个 WarpPolarMode 来指定极坐标映射模式。
线性是默认模式。
半对数映射模拟人类“中央视觉”的特性,即视线中心的视觉敏锐度非常高,而周边视觉的敏锐度较低。

关于 dsize 的选项:

  • 如果 dsize 中的两个值都小于等于 0(默认),目标图像将具有(几乎)与源图像包围圆相同大小的面积:
    d s i z e . a r e a ← ( m a x R a d i u s 2 ⋅ Π ) d s i z e . w i d t h = cvRound ( m a x R a d i u s ) d s i z e . h e i g h t = cvRound ( m a x R a d i u s ⋅ Π ) \begin{array}{l} dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\ dsize.width = \texttt{cvRound}(maxRadius) \\ dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\ \end{array} dsize.area(maxRadius2Π)dsize.width=cvRound(maxRadius)dsize.height=cvRound(maxRadiusΠ)
  • 如果仅 dsize.height 小于等于 0,目标图像面积将与包围圆面积成比例,但按 Kx * Kx 缩放:
    d s i z e . h e i g h t = cvRound ( d s i z e . w i d t h ⋅ Π ) \begin{array}{l} dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\ \end{array} dsize.height=cvRound(dsize.widthΠ)
  • 如果 dsize 中的两个值都大于 0,目标图像将具有给定的大小,因此包围圆的面积将被缩放到 dsize 大小。

反向映射:
你可以通过向标志中添加 WARP_INVERSE_MAP 来获得反向映射。

 // direct transformwarpPolar(src, lin_polar_img, Size(),center, maxRadius, flags);                     // linear PolarwarpPolar(src, log_polar_img, Size(),center, maxRadius, flags + WARP_POLAR_LOG);    // semilog Polar// inverse transformwarpPolar(lin_polar_img, recovered_lin_polar_img, src.size(), center, maxRadius, flags + WARP_INVERSE_MAP);warpPolar(log_polar_img, recovered_log_polar, src.size(), center, maxRadius, flags + WARP_POLAR_LOG + WARP_INVERSE_MAP);

另外,要从极坐标映射坐标 (rho, phi) 计算原始坐标 (x, y):

   double angleRad, magnitude;double Kangle = dst.rows / CV_2PI;angleRad = phi / Kangle;if (flags & WARP_POLAR_LOG){double Klog = dst.cols / std::log(maxRadius);magnitude = std::exp(rho / Klog);}else{double Klin = dst.cols / maxRadius;magnitude = rho / Klin;}int x = cvRound(center.x + magnitude * cos(angleRad));int y = cvRound(center.y + magnitude * sin(angleRad));

在OpenCV中,warpPolar函数用于将图像从笛卡尔坐标系转换到极坐标系或从极坐标系转换回笛卡尔坐标系。这种变换对于进行圆形图像处理非常有用,例如检测圆环状特征或进行图像的径向滤波。

函数原型

void cv::warpPolar	
(InputArray 	src,OutputArray 	dst,Size 	dsize,Point2f 	center,double 	maxRadius,int 	flags 
)		

参数

  • 参数src 源图像。
  • 参数dst 目标图像。它将具有与 src 相同的类型。
  • 参数 dsize 目标图像的大小(参见描述中的有效选项)。
  • 参数center 转换的中心点。
  • 参数maxRadius 包围圆的半径来进行转换。它还确定了逆向的幅度比例参数。
  • flags: 插值方法的组合,InterpolationFlags + WarpPolarMode。
    • 添加 WARP_POLAR_LINEAR 来选择线性极坐标映射(默认)
    • 添加 WARP_POLAR_LOG 来选择半对数极坐标映射
    • 添加 WARP_INVERSE_MAP 来进行反向映射

注意事项
该函数不能原地操作。
为了计算幅度和角度(以度为单位),内部使用 cartToPolar 函数,因此角度范围是从 0 到 360 度,精度约为 0.3 度。
此函数使用 remap。由于当前实现的限制,输入和输出图像的大小应该小于 32767x32767。

代码示例


#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/opencv.hpp>using namespace cv;int main( int argc, char** argv )
{// 读取图像Mat image = imread( "/media/dingxin/data/study/OpenCV/sources/images/circle2.jpg", IMREAD_GRAYSCALE );if ( image.empty() ){std::cerr << "Error: Could not open or find the image." << std::endl;return -1;}// 设置极坐标变换的中心点Point2f center( image.cols / 2.0, image.rows / 2.0 );// 设置最大半径double maxRadius = std::min( image.cols, image.rows ) / 2.0;// 设置输出图像的大小Size dsize( 360, maxRadius );  // 360度,半径为最大半径// 创建输出图像Mat polarImage;// 应用极坐标变换warpPolar( image, polarImage, dsize, center, maxRadius, WARP_POLAR_LINEAR + INTER_LINEAR);// 显示结果namedWindow( "Original Image", WINDOW_NORMAL );imshow( "Original Image", image );namedWindow( "Polar Image", WINDOW_NORMAL );imshow( "Polar Image", polarImage );waitKey( 0 );return 0;
}

运行结果

在这里插入图片描述

这篇关于OpenCV几何图像变换(11)极坐标转换函数warpPolar()的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109114

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义