负载调制平衡放大器LMBA理论分析与ADS理想架构仿真

本文主要是介绍负载调制平衡放大器LMBA理论分析与ADS理想架构仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

负载调制平衡放大器LMBA理论分析与ADS理想架构仿真

负载调制平衡放大器Load Modulation Balanced PA,简称LMBA是2016年Cripps大佬分析实践的:
An Efficient Broadband Reconfigurable Power Amplifier Using Active Load Modulation

本文ADS工程下载链接:负载调制平衡放大器LMBA理论分析与ADS理想架构仿真-ADS仿真资源

目录

  • 负载调制平衡放大器LMBA理论分析与ADS理想架构仿真
    • 0、LMBA架构简述
      • 0.1、LMBA架构
      • 0.2、LMBA架构优势
      • 0.3、架构优势原因
    • 1、LMBA理论推导
      • 1.1 推导理论
      • 1.2 Matlab推导代码
    • 2、ADS对理想LMBA仿真
      • 2.1 ADS理想3dB电桥构建
      • 2.2 ADS理想LMBA架构搭建
      • 2.3 ADS理想LMBA仿真结果分析
        • 2.3.1 阻抗调制分析
        • 2.3.2 输出效率分析
        • 2.3.3 输出效率分析结果验证-3dB耦合器失配仿真

0、LMBA架构简述

0.1、LMBA架构

LMBA本质是是一种双输入的架构,在实现宽带和高回退方面具备优势。但是与常规的双输入的Doherty、Outphasing这种不同,LMBA使用单独的控制信号(CA)对平衡放大器(BA)组进行调制,依据控制信号相位和幅度的不同,可以将平衡功放对的输出阻抗调制到任意位置,即实现完美匹配。
在这里插入图片描述

0.2、LMBA架构优势

那么,简单来说,假设我们直接获得了输入信号和控制信号,我们进行LBMA设计时,有如下优势:
1、无需设计输出匹配电路,依靠控制信号将阻抗调为完美匹配点
2、对于宽带情况,使用不同幅度、相位的控制信号就行,宽带能力极强,除了结构中的3dB电桥外无结构限制

但是,宽带电桥是非常常见的,超倍频程也是轻轻松松。

0.3、架构优势原因

实际上,LBMA的特殊性是从隔离端口注入的控制信号,这样平衡功放对可以认为和控制信号隔离,控制信号的输入阻抗恒定50欧姆。对于其他一些DPA或者异相架构,由于使用的是非隔离合路器,多路之间相互调制,复杂度高。

1、LMBA理论推导

1.1 推导理论

LMBA的理论推导非常简单,下面简单说明。
在 LMBA 情况下,两个平衡设备表示为电流吸收器,具有相等的幅度 I b {I}_{b} Ib和适当的90°相位偏移。

因此,假设如上架构图中3dB电桥2端口电流为 I 2 = − I b I_{2}=-I_{b} I2=Ib,对应的4端口电流为 I 4 = − j I b I_{4}=-jI_{b} I4=jIb,两者相位差90°。

控制信号从3端口注入,其电流假设为 I 3 = I c o n = − j I c e j ϕ I_{3}=I_{\mathrm{con}}=-jI_{c}e^{j\phi} I3=Icon=jIcejϕ。 自然, I c I_{c} Ic是控制信号的幅值, ϕ \phi ϕ是控制信号的相位。

电桥的1端口是输出端口,接的是50欧姆负载,因此有: V 1 = − Z 0 I 1 {V}_{1}=-Z_{0}I_{1} V1=Z0I1

而对于一个理想的电桥,其4端口的电压、电流关系如下所示:
在这里插入图片描述
结合上面的方程,即可求解得到平衡功放对的输出阻抗(ZA和ZB其实就是电桥2、3端口的输出阻抗):
Z A = Z 0 ( 1 − 2 I c e j ϕ I b ) Z B = Z 0 ( 1 − 2 I c e j ϕ I b ) Z_{A}=Z_{0}\left(1-\sqrt2\frac{I_{c}e^{j\phi}}{I_{b}}\right)\\Z_{B}=Z_{0}\left(1-\sqrt2\frac{I_{c}e^{j\phi}}{I_{b}}\right) ZA=Z0(12 IbIcejϕ)ZB=Z0(12 IbIcejϕ)

1.2 Matlab推导代码

使用Matlab进行自动的公式推导,求解得到的Matlab代码如下:

clc
clear
syms Ib Ic phi Z0 I1 ZA ZBI2=-Ib;
I4=-1j*Ib;
I3=-1j*Ic*exp(1j*phi);V1=(-1j*I3-1j*sqrt(2)*I4)*Z0;
V2=(-1j*I4-1j*sqrt(2)*I3)*Z0;
V3=(-1j*I1-1j*sqrt(2)*I2)*Z0;
V4=(-1j*I2-1j*sqrt(2)*I1)*Z0;eqn(1)=V1==-I1*Z0;
eqn(2)=ZA==V2/I2;
eqn(3)=ZB==V4/I4;sol = solve(eqn, [ZA ZB I1], 'ReturnConditions', true);pretty(simplify(sol.ZA))
pretty(simplify(sol.ZB))

从最终的结果来看,似乎和原作者差了一个负号,可以是哪边参考方向搞错了,在此不深究了。
在这里插入图片描述

2、ADS对理想LMBA仿真

2.1 ADS理想3dB电桥构建

把论文中给出的Z参数矩阵带入到ADS的控件之中,模拟理想3dB电桥器件。这部分具体操作可以参考:在ADS中使用传输端口参数构建理想元器件模型—以3dB电桥为例。最终的结果如下所示:
在这里插入图片描述
在这里插入图片描述

2.2 ADS理想LMBA架构搭建

按照大佬论文中的框架图,可以搭建为如下的LMBA理想架构。可以看到,需要对控制信号的幅度和相位进行扫描:
在这里插入图片描述

2.3 ADS理想LMBA仿真结果分析

2.3.1 阻抗调制分析

通过仿真可以看到在控制信号幅度、相位改变时两个平衡功放的阻抗曲线。可以看到在控制PA输出功率比平衡对单个PA输出功率小6dB时,即可将输出阻抗调制到100欧姆,可以理解为从Ropt调制到2Ropt,这也是经典Doherty在回退时的调制能力。
在这里插入图片描述
可以看到得到的仿真结果和Cripps论文中的一致,下面这是论文原图:
在这里插入图片描述

2.3.2 输出效率分析

Cripps原文中这样描述:可以通过调整控制信号的幅度和相位来“调制”每个平衡设备输出端的负载,并且对于每个平衡端口,产生的阻抗具有相同的幅度和相位。此外,辅助放大器产生的功率作为端口 1 输出的一部分完全恢复

也就是说,控制信号的输入功率会到最终的输出端口,但是实际的仿真结果却有出入。从下图可以看到,无论输入的总功率是多少,输出都是恒定在3dBm
在这里插入图片描述
经过分析,这是由于失配导致的,将在下面进行分析。但是对于原文所描述的辅助放大器产生的功率作为端口 1 输出的一部分完全恢复,依旧是无法理解,懂行的可以指导一下。

2.3.3 输出效率分析结果验证-3dB耦合器失配仿真

假设在控制放大器输出-6dBm信号的情况下,此时平衡功放对的阻抗都被调制到100欧姆,也就是2Ropt的6dB回退状态。此时对合路所使用的耦合器进行分析:
在这里插入图片描述
显而易见,实际上此时的3dB合路电桥工作在失配的状态,此时会存在无可避免的合路损耗,可以看到每路合路是-3.5dB左右,正常来说-3dB才是完美合路。在失配状态,虽然合路效率变差,但是控制信号到输出端口的隔离度也变差了部分控制信号成为了输出端口的输出,因此合路依旧维持了3dBm的输出:
在这里插入图片描述
总之,从分析和仿真来看,控制信号好像不会全部注入到输出中去。对平衡功放的阻抗调制会导致3dB电桥端口的失配,导致合路效率降低,但是此时失配也会有部分控制信号注入到合路,导致最终合路的输出功率恒定。

分析有问题敬请指出,因为部分分析结果和原文有出入。

这篇关于负载调制平衡放大器LMBA理论分析与ADS理想架构仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1106431

相关文章

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号