Datawhale X 李宏毅苹果书 AI夏令营_深度学习基础学习心得

本文主要是介绍Datawhale X 李宏毅苹果书 AI夏令营_深度学习基础学习心得,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本次学习了深度学习中的局部最小值

1、书上说有时候模型一开始就训练不起来,不管怎么更新参数损失都不下降。我之前遇到过这种情况,大概是做一个数据很不平衡的二分类,正负样本比例大概为9:1,模型倾向于全部预测为正样本,没有办法学习负样本。

2、3.1.1介绍了一下鞍点,鞍点的各个方向的梯度是等于零的,而我们的模型反向传播又是基于梯度的,所以到了鞍点就没有办法再让损失下降了,但是其实鞍点和局部最优又区别,鞍点并不是梯度最小的点。

3、3.1.2介绍了损失函数L(\theta)的近似:

第一项:如果\theta很接近\theta‘,L(\theta)近似于L(\theta’)

第二项:g代表梯度,L(\theta’)对于\theta中每个元素的偏微分

第三项:H:海森矩阵,里面是L的二次微分

接下来需要探究误差表面的形状,来判断是否为鞍点,主要探究第三项,另v = (\theta-\theta’):

情况1):如果对于所有v,第三项>0:局部最小

情况2):对所有v,第三项<0:局部最大

情况3):对所有v,有时大于0有时小于0:鞍点

在实际判断的时候,不需要用H于每一个v进行运算,只需要判断是否为正定或负定矩阵即可。

4、判断完鞍点,H还能够帮我们在鞍点指路:

令u = (\theta-\theta’),\lambda为H的特征值:,该等式在\lambda小于0时小于0

此时L(\theta)<L(\theta’),因此沿着u的方向更新,损失就会变小,所以在鞍点就需要找负特征值以及对应的特征向量

5、其他逃离鞍点的方法:

很多情况下,低维空间的局部最小在高维空间可能是鞍点

实际上,几乎找不到所有特征值都为正的临界点。大概还有一半的路可以让损失下降

#############################################################################

学习心得:感觉还是很有收获的,之前调模型可能就主要想着让损失下降,但是不求甚解,了解了最底层的逃离鞍点让损失下降的逻辑之后,对于各种算法好像有了新的认识

这篇关于Datawhale X 李宏毅苹果书 AI夏令营_深度学习基础学习心得的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105379

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss