自然语言处理系列四十二》新词发现与短语提取》新词发现》代码实战

本文主要是介绍自然语言处理系列四十二》新词发现与短语提取》新词发现》代码实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】

文章目录

  • 自然语言处理系列四十二
    • 新词发现》代码实战
      • 短语提取算法原理
  • 总结

自然语言处理系列四十二

新词发现》代码实战

新词发现是 NLP 的基础任务之一,通过对已有语料进行挖掘,从中识别出新词。上一篇文章已经对新词发现做了详细介绍,下面展示代码,HanLP工具提供了新词发现的功能,代码如11.1所示。
【代码11.1】 FindNewWord.java

package com.chongdianleme.job;
import org.ansj.dic.LearnTool;
import org.ansj.splitWord.analysis.NlpAnalysis;
import org.apache.commons.lang3.StringUtils;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
/*** Created by 充电了么 - 陈敬雷* 充电了么 - 专注上班族教育培训和职业技能提升充电学习的在线教育平台* HanLP新词发现功能,开源地址:https://github.com/hankcs/HanLP
*/
public class FindNewWord {public static void main(String[] args) {String content = "分布式机器学习实战(人工智能科学与技术丛书)作者陈敬雷,责任编辑赵佳霓,此书深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目,并有以下名人陈兴茂,梅一多,杨正洪,刘冬冬,龙旭东联袂推荐:" +"——陈兴茂 猎聘CTO\n" +"——梅一多 博士 上海市青年拔尖人才,中基凌云科技有限公司联合创始人\n" +"——杨正洪 博士 中央财经大学财税大数据实验室首席科学家\n" +"——刘冬冬 首席数据官联盟创始人\n" +"——龙旭东 北京掌游智慧科技有限公司董事长";List<String> newWordList = findNewWords(content);System.out.println(StringUtils.join(newWordList,","));}/*** HanLP新词发现* @param content* @return*/public static List<String> findNewWords(String content){LearnTool learnTool = new LearnTool();NlpAnalysis nlpAnalysis = new NlpAnalysis().setLearnTool(learnTool) ;nlpAnalysis.parseStr(content);List<Map.Entry<String, Double>> topTree = learnTool.getTopTree(0);List<String> newWords = new ArrayList<String>();if(topTree!=null){for (Map.Entry<String, Double> entry : topTree) {newWords.add(entry.getKey());}}return newWords;}
}

短语提取算法原理

下一篇文章详细讲解短语提取算法原理,敬请关注。

总结

此文章有对应的配套新书教材和视频:

【配套新书教材】
《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:本书从自然语言处理基础开始,逐步深入各种NLP热点前沿技术,使用了Java和Python两门语言精心编排了大量代码实例,契合公司实际工作场景技能,侧重实战。
全书共分为19章,详细讲解中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注、文本相似度算法、语义相似度计算、词频-逆文档频率(TF-IDF)、条件随机场、新词发现与短语提取、搜索引擎Solr Cloud和Elasticsearch、Word2vec词向量模型、文本分类、文本聚类、关键词提取和文本摘要、自然语言模型(Language Model)、分布式深度学习实战等内容,同时配套完整实战项目,例如对话机器人实战、搜索引擎项目实战、推荐算法系统实战。
本书理论联系实践,深入浅出,知识点全面,通过阅读本书,读者不仅可以理解自然语言处理的知识,还能通过实战项目案例更好地将理论融入实际工作中。

【配套视频】
自然语言处理NLP原理与实战 视频教程【陈敬雷】
视频特色:《自然语言处理NLP原理与实战》包含了互联网公司前沿的热门算法的核心原理,以及源码级别的应用操作实战,直接讲解自然语言处理的核心精髓部分,自然语言处理从业者或者转行自然语言处理者必听视频!

上一篇:自然语言处理系列四十一》新词发现与短语提取》新词发现算法原理
下一篇:自然语言处理系列四十三》新词发现与短语提取》短语提取》算原理

这篇关于自然语言处理系列四十二》新词发现与短语提取》新词发现》代码实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103964

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内