YOLOv9改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化RepNCSPELAN4

本文主要是介绍YOLOv9改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化RepNCSPELAN4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、本文介绍

本文记录的是利用ExtraDW优化YOLOv9中的RepNCSPELAN4,详细说明了优化原因,注意事项等。ExtraDWMobileNetv4模型中提出的新模块,允许以低成本增加网络深度和感受野,具有ConvNext和IB的组合优势。可以在提高模型精度的同时降低一定量的模型参数。

文章目录

  • 一、本文介绍
  • 二、UIB介绍
    • 2.1 UIB结构设计
    • 2.2 ExtraDW结构组成
    • 2.3 ExtraDW特点
  • 三、ExtraDW的实现代码
  • 四、添加步骤
    • 4.1 修改common.py
      • 4.1.1 基础模块1
      • 4.1.2 创新模块2⭐
    • 4.2 修改yolo.py
  • 五、yaml模型文件
    • 5.1 模型改进版本一
    • 5.2 模型改进版本二⭐
  • 六、成功运行结果


二、UIB介绍

Universal Inverted Bottleneck(UIB)通用反向瓶颈结构。

2.1 UIB结构设计

  1. 基于MobileNetV4

    • UIB建立在MobileNetV4之上,即采用深度可分离卷积逐点扩展及投影的反向瓶颈结构。
    • 反向瓶颈块(IB)中引入两个可选的深度可分离卷积,一个在扩展层之前,另一个在扩展层和投影层之间。
  2. UIB有四种可能的实例化形式:

    • Inverted Bottleneck (IB):对扩展后的特征激活进行空间混合,以增加成本为代价提供更大的模型容量。
    • ConvNext:通过在扩展之前进行空间混合,使用更大的核尺寸实现更便宜的空间混合。
    • ExtraDW:文中引入的新变体,允许以低成本增加网络深度和感受野,具有ConvNextIB的组合优势。
    • FFN:由两个1x1逐点卷积(PW)组成的栈,中间有激活和归一化层。

在这里插入图片描述

2.2 ExtraDW结构组成

结构组成

  • IB块中加入两个可选的深度可分离卷积一个在扩展层之前,另一个在扩展层和投影层之间。

2.3 ExtraDW特点

  1. 灵活性

    • 在每个网络阶段,可以灵活地进行空间和通道混合的权衡调整,根据需要扩大感受野,并最大化计算利用率,增强模型对输入特征的感知能力。
  2. 效率提升

    • 提供了一种廉价增加网络深度和感受野的方式。相比其他结构,它在增加网络深度和感受野的同时,不会带来过高的计算成本。
    • 在论文中,与其他注意力机制结合时,能有效提高模型的运算强度,减少内存访问需求,从而提高模型效率。

论文:http://arxiv.org/abs/2404.10518
源码:https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py

三、ExtraDW的实现代码

ExtraDW模块的实现代码如下:参考代码


def conv2d(in_channels, out_channels, kernel_size=3, stride=1, groups=1, bias=False, norm=True, act=True):conv = nn.Sequential()padding = (kernel_size - 1) // 2conv.append(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias, groups=groups))if norm:conv.append(nn.BatchNorm2d(out_channels))if act:conv.append(nn.ReLU6())return convclass UniversalInvertedBottleneckBlock(nn.Module):def __init__(self, in_channels, out_channels, start_dw_kernel_size, middle_dw_kernel_size, middle_dw_downsample,stride, expand_ratio):"""An inverted bottleneck block with optional depthwises.Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py"""super(UniversalInvertedBottleneckBlock, self).__init__()# starting depthwise convself.start_dw_kernel_size = start_dw_kernel_sizeif self.start_dw_kernel_size:stride_ = stride if not middle_dw_downsample else 1self._start_dw_ = conv2d(in_channels, in_channels, kernel_size=start_dw_kernel_size, stride=stride_, groups=in_channels, act=False)# expansion with 1x1 convsexpand_filters = make_divisible(in_channels * expand_ratio, 8)self._expand_conv = conv2d(in_channels, expand_filters, kernel_size=1)# middle depthwise convself.middle_dw_kernel_size = middle_dw_kernel_sizeif self.middle_dw_kernel_size:stride_ = stride if middle_dw_downsample else 1self._middle_dw = conv2d(expand_filters, expand_filters, kernel_size=middle_dw_kernel_size, stride=stride_, groups=expand_filters)# projection with 1x1 convsself._proj_conv = conv2d(expand_filters, out_channels, kernel_size=1, stride=1, act=False)# expand depthwise conv (not used)# _end_dw_kernel_size = 0# self._end_dw = conv2d(out_channels, out_channels, kernel_size=_end_dw_kernel_size, stride=stride, groups=in_channels, act=False)def forward(self, x):if self.start_dw_kernel_size:x = self._start_dw_(x)# print("_start_dw_", x.shape)x = self._expand_conv(x)# print("_expand_conv", x.shape)if self.middle_dw_kernel_size:x = self._middle_dw(x)# print("_middle_dw", x.shape)x = self._proj_conv(x)# print("_proj_conv", x.shape)return x

四、添加步骤

4.1 修改common.py

此处需要修改的文件是models/common.py

common.py中定义了网络结构的通用模块,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。

4.1.1 基础模块1

模块改进方法1️⃣:直接加入UniversalInvertedBottleneckBlock模块
将上方的实现代码粘贴到common.py文件夹下,UniversalInvertedBottleneckBlock模块添加后如下:

在这里插入图片描述

注意❗:在4.2小节中的yolo.py文件中需要声明的模块名称为:UniversalInvertedBottleneckBlock

4.1.2 创新模块2⭐

模块改进方法2️⃣:基于UniversalInvertedBottleneckBlockRepNCSPELAN4

相较方法一中的直接插入UIB模块,利用UIB模块对卷积等其他模块进行改进,其新颖程度会更高一些,训练精度可能会表现的更高。

第二种改进方法是对YOLOv9中的RepNCSPELAN4模块进行改进。UIB 中的ExtraDW模块RepNCSPELAN4 结合后,可以为YOLOv9提供更丰富的特征表示,更好地调整特征的空间分布和通道信息,使得模型能够更有效地聚焦于目标相关的特征,减少无关信息的干扰,进而提高检测精度。

改进代码如下:

class UIBRepNCSPELAN4(nn.Module):# csp-elandef __init__(self, c1, c2, c3, c4, c5=1):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()self.c = c3//2self.cv1 = Conv(c1, c3, 1, 1)self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), UniversalInvertedBottleneckBlock(c4, c4, 3, 3, True, 1, 6))self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), UniversalInvertedBottleneckBlock(c4, c4, 5, 3, True, 1, 4))self.cv4 = Conv(c3+(2*c4), c2, 1, 1)def forward(self, x):y = list(self.cv1(x).chunk(2, 1))y.extend((m(y[-1])) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))def forward_split(self, x):y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in [self.cv2, self.cv3])return self.cv4(torch.cat(y, 1))

在这里插入图片描述

注意❗:在4.2小节中的yolo.py文件中需要声明的模块名称为:UIBRepNCSPELAN4

4.2 修改yolo.py

此处需要修改的文件是models/yolo.py

yolo.py用于函数调用,我们只需要将common.py中定义的新的模块名添加到parse_model函数下即可。

UniversalInvertedBottleneckBlock模块以及UIBRepNCSPELAN4模块添加后如下:

在这里插入图片描述


五、yaml模型文件

5.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以models/detect/yolov9-c.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-UIB.yaml

yolov9-c.yaml中的内容复制到yolov9-c-UIB.yaml文件下,修改nc数量等于自己数据中目标的数量。
在骨干网络中,将四个RepNCSPELAN4模块替换成UniversalInvertedBottleneckBlock模块,注意修改函数中的参数。还需要注意的是,由于PAN+FPN的颈部模型结构存在,层之间的匹配也要记得修改,维度要匹配上

# YOLOv9# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, UniversalInvertedBottleneckBlock, [256, 0, 3, True, 1, 2]],  # 3  修改此处# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, UniversalInvertedBottleneckBlock, [512, 0, 3, True, 1, 2]],  # 5  修改此处# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, UniversalInvertedBottleneckBlock, [512, 5, 3, True, 1, 4]],  # 7  修改此处# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, UniversalInvertedBottleneckBlock, [512, 5, 3, True, 1, 4]],  # 9  修改此处]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detection head# detect[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

5.2 模型改进版本二⭐

此处同样以models/detect/yolov9-c.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-UIB-2.yaml

yolov9-c.yaml中的内容复制到yolov9-c-UIB-2.yaml文件下,修改nc数量等于自己数据中目标的数量。

📌 模型的修改方法是将骨干网络中的所有RepNCSPELAN4模块替换成UIBRepNCSPELAN4模块

# YOLOv9# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, UIBRepNCSPELAN4, [256, 128, 64, 1]],  # 3  修改此处# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, UIBRepNCSPELAN4, [512, 256, 128, 1]],  # 5  修改此处# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, UIBRepNCSPELAN4, [512, 512, 256, 1]],  # 7  修改此处# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, UIBRepNCSPELAN4, [512, 512, 256, 1]],  # 9  修改此处]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 10# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 13], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 10], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 23[7, 1, CBLinear, [[256, 512]]], # 24[9, 1, CBLinear, [[256, 512, 512]]], # 25# conv down[0, 1, Conv, [64, 3, 2]],  # 26-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 27-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28# avg-conv down fuse[-1, 1, ADown, [256]],  # 29-P3/8[[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31# avg-conv down fuse[-1, 1, ADown, [512]],  # 32-P4/16[[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34# avg-conv down fuse[-1, 1, ADown, [512]],  # 35-P5/32[[25, -1], 1, CBFuse, [[2]]], # 36# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37# detection head# detect[[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

六、成功运行结果

分别打印网络模型可以看到UniversalInvertedBottleneckBlock模块UIBRepNCSPELAN4已经加入到模型中,并可以进行训练了。

yolov9-c-UIB

	                 from  n    params  module                                  arguments                     0                -1  1         0  models.common.Silence                   []                            1                -1  1      1856  models.common.Conv                      [3, 64, 3, 2]                 2                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               3                -1  1    102144  models.common.UniversalInvertedBottleneckBlock[128, 256, 0, 3, True, 1, 2]  4                -1  1    164352  models.common.ADown                     [256, 256]                    5                -1  1    400896  models.common.UniversalInvertedBottleneckBlock[256, 512, 0, 3, True, 1, 2]  6                -1  1    656384  models.common.ADown                     [512, 512]                    7                -1  1   2138624  models.common.UniversalInvertedBottleneckBlock[512, 512, 5, 3, True, 1, 4]  8                -1  1    656384  models.common.ADown                     [512, 512]                    9                -1  1   2138624  models.common.UniversalInvertedBottleneckBlock[512, 512, 5, 3, True, 1, 4]  10                -1  1    656896  models.common.SPPELAN                   [512, 512, 256]               11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          12           [-1, 7]  1         0  models.common.Concat                    [1]                           13                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      14                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          15           [-1, 5]  1         0  models.common.Concat                    [1]                           16                -1  1    912640  models.common.RepNCSPELAN4              [1024, 256, 256, 128, 1]      17                -1  1    164352  models.common.ADown                     [256, 256]                    18          [-1, 13]  1         0  models.common.Concat                    [1]                           19                -1  1   2988544  models.common.RepNCSPELAN4              [768, 512, 512, 256, 1]       20                -1  1    656384  models.common.ADown                     [512, 512]                    21          [-1, 10]  1         0  models.common.Concat                    [1]                           22                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      23                 5  1    131328  models.common.CBLinear                  [512, [256]]                  24                 7  1    393984  models.common.CBLinear                  [512, [256, 512]]             25                 9  1    656640  models.common.CBLinear                  [512, [256, 512, 512]]        26                 0  1      1856  models.common.Conv                      [3, 64, 3, 2]                 27                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               28                -1  1    212864  models.common.RepNCSPELAN4              [128, 256, 128, 64, 1]        29                -1  1    164352  models.common.ADown                     [256, 256]                    30  [23, 24, 25, -1]  1         0  models.common.CBFuse                    [[0, 0, 0]]                   31                -1  1    847616  models.common.RepNCSPELAN4              [256, 512, 256, 128, 1]       32                -1  1    656384  models.common.ADown                     [512, 512]                    33      [24, 25, -1]  1         0  models.common.CBFuse                    [[1, 1]]                      34                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       35                -1  1    656384  models.common.ADown                     [512, 512]                    36          [25, -1]  1         0  models.common.CBFuse                    [[2]]                         37                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       38[31, 34, 37, 16, 19, 22]  1  21542822  DualDDetect                             [1, [512, 512, 512, 256, 512, 512]]
yolov9-c-UIB summary: 764 layers, 49004454 parameters, 49004422 gradients, 224.6 GFLOPs

在将UniversalInvertedBottleneckBlock模块替换RepNCSPELAN4模块后,模型参数量和计算量均有减少,更加轻量。

yolov9-c-UIB-2

                 from  n    params  module                                  arguments                     0                -1  1         0  models.common.Silence                   []                            1                -1  1      1856  models.common.Conv                      [3, 64, 3, 2]                 2                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               3                -1  1    231808  models.common.UIBRepNCSPELAN4           [128, 256, 128, 64, 1]        4                -1  1    164352  models.common.ADown                     [256, 256]                    5                -1  1    901888  models.common.UIBRepNCSPELAN4           [256, 512, 256, 128, 1]       6                -1  1    656384  models.common.ADown                     [512, 512]                    7                -1  1   3031552  models.common.UIBRepNCSPELAN4           [512, 512, 512, 256, 1]       8                -1  1    656384  models.common.ADown                     [512, 512]                    9                -1  1   3031552  models.common.UIBRepNCSPELAN4           [512, 512, 512, 256, 1]       10                -1  1    656896  models.common.SPPELAN                   [512, 512, 256]               11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          12           [-1, 7]  1         0  models.common.Concat                    [1]                           13                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      14                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          15           [-1, 5]  1         0  models.common.Concat                    [1]                           16                -1  1    912640  models.common.RepNCSPELAN4              [1024, 256, 256, 128, 1]      17                -1  1    164352  models.common.ADown                     [256, 256]                    18          [-1, 13]  1         0  models.common.Concat                    [1]                           19                -1  1   2988544  models.common.RepNCSPELAN4              [768, 512, 512, 256, 1]       20                -1  1    656384  models.common.ADown                     [512, 512]                    21          [-1, 10]  1         0  models.common.Concat                    [1]                           22                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      23                 5  1    131328  models.common.CBLinear                  [512, [256]]                  24                 7  1    393984  models.common.CBLinear                  [512, [256, 512]]             25                 9  1    656640  models.common.CBLinear                  [512, [256, 512, 512]]        26                 0  1      1856  models.common.Conv                      [3, 64, 3, 2]                 27                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               28                -1  1    212864  models.common.RepNCSPELAN4              [128, 256, 128, 64, 1]        29                -1  1    164352  models.common.ADown                     [256, 256]                    30  [23, 24, 25, -1]  1         0  models.common.CBFuse                    [[0, 0, 0]]                   31                -1  1    847616  models.common.RepNCSPELAN4              [256, 512, 256, 128, 1]       32                -1  1    656384  models.common.ADown                     [512, 512]                    33      [24, 25, -1]  1         0  models.common.CBFuse                    [[1, 1]]                      34                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       35                -1  1    656384  models.common.ADown                     [512, 512]                    36          [25, -1]  1         0  models.common.CBFuse                    [[2]]                         37                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       38[31, 34, 37, 16, 19, 22]  1  21542822  DualDDetect                             [1, [512, 512, 512, 256, 512, 512]]
yolov9-c-UIB-2 summary: 1058 layers, 51420966 parameters, 51420934 gradients, 241.5 GFLOPs

这篇关于YOLOv9改进策略【卷积层】| 利用MobileNetv4中的UIB、ExtraDW优化RepNCSPELAN4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103814

相关文章

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)