将Transformer应用于图像时,如何理解其中的QKV(形象化说明)+自注意力机制的理解

本文主要是介绍将Transformer应用于图像时,如何理解其中的QKV(形象化说明)+自注意力机制的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Transformer中,Q(Query)、K(Key)、V(Value)可以用以下方式形象化理解:

一、概念解释

1. Query(查询):可以想象成一个“问题”或者“搜索请求”。它代表着当前要关注的信息点,比如在处理图像时,某个图像块想要了解自己与其他图像块的关系,这个图像块对应的向量就充当了Query的角色。

2. Key(键):类似于一个“标签”或者“索引”。它为其他部分提供一种标识,以便与Query进行匹配。在图像中,每个图像块的Key向量可以被看作是这个图像块的一种特征标识,用于与其他图像块进行关联。

3. Value(值):是实际的“信息内容”。它包含着具体的数据或特征。在图像中,Value向量代表着图像块所携带的具体特征信息,通过与Query和Key的交互,决定哪些Value的信息应该被更多地关注和融合。

二、形象化示例  假设我们有一本包含很多动物图片的画册,我们想要找到特定的动物图片。

1. Query:现在我们心中有一个特定的动物形象,比如一只黄色的小猫咪,这个心中的形象就是Query。它代表着我们正在寻找的目标特征。

2. Key:每一页画册上的动物图片都有一些关键词描述,比如“黑色大狗”“白色兔子”“黄色猫咪”等。这些关键词就像是Key,帮助我们快速判断这一页是否可能是我们要找的内容。

3. Value:而每一页上的具体动物图片就是Value。当我们通过Query(心中的黄色小猫咪形象)与Key(画册上的关键词)进行匹配后,找到了对应的页面,这个页面上的动物图片(Value)就是我们最终得到的具体信息内容。

在Transformer处理图像的过程中,通过计算Query与各个Key的相似度,来确定对不同Value的关注程度,从而实现对图像特征的有效提取和融合。

在自注意力机制中,我们可以继续用查找黄色小猫的例子来理解。

假设我们有一本非常大的画册,里面有很多不同的动物图片,现在我们要找到黄色小猫这个特定的目标。

Query(查询)

黄色小猫的形象就是我们的 Query。它代表着我们要寻找的特定信息,就像在自注意力机制中,某个特定的元素(比如一个词或一个图像块)想要了解自己与其他元素的关系,这个元素就会产生一个 Query 向量来发起查询。

Key(键)

画册中每一页动物图片的关键词描述就是 Key。每一个 Key 都为画册中的一页提供了一种标识,让我们可以判断这一页与我们要找的黄色小猫的相关性。在自注意力机制中,每个元素也会产生一个 Key 向量,这个向量可以与其他元素的 Query 向量进行交互,以确定彼此的相关性。

Value(值)

画册中的每一页具体的动物图片就是 Value。当我们通过 Query 与 Key 的匹配找到可能相关的页面后,这些页面上的动物图片(Value)就提供了具体的信息内容。在自注意力机制中,Value 向量包含了每个元素的实际信息,通过与 Query 和 Key 的交互,决定哪些 Value 的信息应该被更多地关注和融合。

在自注意力机制的计算过程中,就像我们在画册中查找黄色小猫一样:

        首先,对于每一个元素(相当于画册中的每一页),它的 Query 向量会与所有其他元素的 Key 向量进行点积运算,这个点积的结果反映了两个元素之间的相关性。然后,通过对这些点积结果进行归一化处理(比如使用 softmax 函数),得到每个元素对其他元素的注意力权重。这些注意力权重就决定了在融合信息时,每个 Value 向量应该被赋予多少的重要性。

        最后,将所有的 Value 向量根据对应的注意力权重进行加权求和,得到经过自注意力机制处理后的新的表示。这个新的表示融合了与当前元素最相关的其他元素的信息,就像我们在画册中找到了与黄色小猫最相关的那些页面,并综合这些页面上的信息来更好地理解黄色小猫的特征。

简单来说,自注意力机制是本身自己的各个元素发出对于自身的query,从而得到每一个元素本身对于全局的重要性。

这篇关于将Transformer应用于图像时,如何理解其中的QKV(形象化说明)+自注意力机制的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1103535

相关文章

Tomcat版本与Java版本的关系及说明

《Tomcat版本与Java版本的关系及说明》:本文主要介绍Tomcat版本与Java版本的关系及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Tomcat版本与Java版本的关系Tomcat历史版本对应的Java版本Tomcat支持哪些版本的pythonJ

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Nginx指令add_header和proxy_set_header的区别及说明

《Nginx指令add_header和proxy_set_header的区别及说明》:本文主要介绍Nginx指令add_header和proxy_set_header的区别及说明,具有很好的参考价... 目录Nginx指令add_header和proxy_set_header区别如何理解反向代理?proxy

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时