文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑电-证-碳机制协同的绿...工业园区分布式优化运行策略》

本文主要是介绍文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑电-证-碳机制协同的绿...工业园区分布式优化运行策略》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇文章的核心内容是关于在实现“碳达峰·碳中和”目标的背景下,针对绿电工业园区提出的一套考虑电-证-碳机制协同的分布式优化运行策略。以下是文章的主要内容概述:

  1. 研究背景:在“碳达峰·碳中和”目标的驱动下,工业园区作为电力系统的重要组成部分,需要实现绿色转型和低碳化发展。

  2. 研究目的:提出一种考虑电-证-碳机制协同的绿电工业园区动态定价与能量管理策略,以促进可再生能源的消纳和实现低碳化发展。

  3. 策略框架:建立了“一主多从”能量管理框架,包括园区运营商与多类型工业用户之间的利益交互关系。

  4. 双层博弈模型

    • 上层模型:优化运营商的动态定价策略,考虑绿证交易和碳交易机制的联动。
    • 下层模型:优化负荷能量管理策略,充分利用用户间的差异化特征。
  5. 求解算法:提出基于改进的交替方向乘子法(VPP-ADMM)的高效分层迭代求解算法,用以解决双层博弈模型。

  6. 算例研究:通过典型系统算例,验证了所提策略的有效性,包括运营商和用户的经济效益分析、差异性定价策略结果分析、储能资源共享效益分析以及绿电消纳和碳减排效果分析。

  7. 研究结论

    • 建立的模型和策略能够实现园区运营商和用户整体利益的提升。
    • 考虑电-证-碳机制的协同作用,可进一步促进绿电消纳和低碳化发展。
    • 差异性电价机制和共享储能的规模化效应,提高了园区能量管理的灵活性与整体效益。
  8. 关键词:工业园区、电-证-碳机制协同、差异性工业负荷、绿电园区、共享储能。

  9. 项目支持:研究得到国网河北省电力有限公司石家庄供电分公司项目的支持。

这篇文章为绿电工业园区在实现“双碳”目标过程中的优化运行提供了一种新的思路和方法,通过合理的电-证-碳机制协同和能量管理,促进了工业园区的绿色低碳发展。

根据文章的摘要和描述,复现仿真的主要思路可以概括为以下几个步骤:

  1. 系统结构和参数设置:定义工业园区的能源结构,包括清洁能源供应基地、差异性工业用户和共享储能电站。设置风光出力预测、负荷需求、燃气轮机参数、绿证和碳交易市场价格等。

  2. 建立双层博弈模型

    • 上层模型:以园区运营商为目标,优化动态定价策略。
    • 下层模型:以工业用户为目标,优化能量管理策略。
  3. 算法实现:实现基于改进的交替方向乘子法(VPP-ADMM)的迭代求解算法,用于求解双层博弈模型。

  4. 数据预处理:对输入数据进行预处理,包括风光出力、负荷需求等,以适应模型的需要。

  5. 仿真运行:运行仿真模型,记录运营商和用户的优化结果。

  6. 结果分析:分析仿真结果,包括经济效益、绿电消纳、碳排放等。

以下是使用Python语言表示的简化版仿真程序框架:

# 导入所需的库
import numpy as np
from scipy.optimize import minimize# 定义参数和变量
# 此处应包括风光预测出力、负荷需求、燃气轮机参数等
# 例如:
# wind_power = np.array([...])
# solar_power = np.array([...])
# load_demand = np.array([...])# 定义上层模型目标函数
def objective_upper_model(pricing_strategy):# 根据文章中的公式计算运营商收益# 此处应包括购电成本、发电成本、绿证交易成本等return total_cost# 定义下层模型目标函数
def objective_lower_model(user_strategy, pricing_strategy):# 根据文章中的公式计算用户成本# 此处应包括购电成本、负荷调整成本、储能使用成本等return user_total_cost# 定义约束条件
def constraints(user_strategy):# 包括储能约束、功率平衡约束等return constraints_list# 定义VPP-ADMM算法
def vpp_admm(pricing_strategy, user_strategies):# 初始化拉格朗日乘子和惩罚参数# 进行迭代求解# 更新拉格朗日乘子和惩罚参数return updated_pricing_strategy, updated_user_strategies# 主函数
def main():# 参数初始化# 初始化风光出力、负荷需求等# 双层博弈模型求解for iteration in range(max_iterations):pricing_strategy = ...  # 根据实际情况初始化或更新user_strategies = ...  # 初始化所有用户策略# 求解上层模型upper_result = minimize(objective_upper_model,pricing_strategy,constraints=...,method='SLSQP')# 更新运营商定价策略pricing_strategy = upper_result.x# 求解下层模型(用户能量管理策略)for user_index, user_strategy in enumerate(user_strategies):lower_result = minimize(objective_lower_model,user_strategy,args=(pricing_strategy,),constraints=constraints,method='SLSQP')user_strategies[user_index] = lower_result.x# 调用VPP-ADMM算法更新策略pricing_strategy, user_strategies = vpp_admm(pricing_strategy, user_strategies)# 检查收敛条件if check_convergence(pricing_strategy, user_strategies):break# 输出结果print("运营商收益:", objective_upper_model(pricing_strategy))for index, user_strategy in enumerate(user_strategies):print(f"用户 {index} 成本:", objective_lower_model(user_strategy, pricing_strategy))# 进行进一步的分析,如绿电消纳、碳排放等if __name__ == "__main__":main()

请注意,上述代码仅为程序框架,具体的函数实现需要根据文章中提出的模型和方法进行详细设计和编码。实际的程序实现会更加复杂,需要包括详细的参数设置、约束条件定义、目标函数计算以及收敛条件判断等。此外,还需要与具体的电力市场规则和操作实践相结合。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力系统自动化EI\CSCD\北大核心《考虑电-证-碳机制协同的绿...工业园区分布式优化运行策略》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1102278

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

Python Invoke自动化任务库的使用

《PythonInvoke自动化任务库的使用》Invoke是一个强大的Python库,用于编写自动化脚本,本文就来介绍一下PythonInvoke自动化任务库的使用,具有一定的参考价值,感兴趣的可以... 目录什么是 Invoke?如何安装 Invoke?Invoke 基础1. 运行测试2. 构建文档3.

Python 中 requests 与 aiohttp 在实际项目中的选择策略详解

《Python中requests与aiohttp在实际项目中的选择策略详解》本文主要介绍了Python爬虫开发中常用的两个库requests和aiohttp的使用方法及其区别,通过实际项目案... 目录一、requests 库二、aiohttp 库三、requests 和 aiohttp 的比较四、requ

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本