本文主要是介绍PSMNet:Pyramid Stereo Matching Network学习测试笔记04-特征提取部分前向传播,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
写在前面的话:
2019年9月21日18:56:48好久没回来更新博客了。因为在实习中,实习的新问题一大堆,并且实习的工作内容整理了也是发在公司内网wiki,外面是不可能发的(专业,有节操)。周末再做做毕业论文相关的工作。
写在前面的话2:
2019年09月28日18:02:55补充说明:CSDN博客发布版权更新,如果您看了博客并且用到PSMNet相关东西,请注明引用原作者的文章:
@inproceedings{chang2018pyramid,
title={Pyramid Stereo Matching Network},
author={Chang, Jia-Ren and Chen, Yong-Sheng},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5410–5418},
year={2018}
}
言归正传:
PSMNet的特征提取网络采用的是PSPNet的金字塔池化思想,在提取特征的时候兼顾了非局部的特征(我可不敢说全局特征,因为图像尺寸不一样的话,最终感受野能不能覆盖整个x方向可是不确定的)。看tensorboardx的计算图看得迷迷糊糊,还是直接看代码容易梳理计算逻辑。
1. 金字塔池化(图为2k加载略慢)
feature_extraction((firstconv): Sequential((0): Sequential((0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace)(2): Sequential((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(3): ReLU(inplace)(4): Sequential((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(5): ReLU(inplace))(layer1): Sequential((0): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(2): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))))(layer2): Sequential((0): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(downsample): Sequential((0): Conv2d(32, 64, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(2): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(3): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(4): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(5): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(6): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(7): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(8): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(9): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(10): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(11): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(12): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(13): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(14): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(15): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))))(layer3): Sequential((0): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(downsample): Sequential((0): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(2): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))))(layer4): Sequential((0): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(2): BasicBlock((conv1): Sequential((0): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace))(conv2): Sequential((0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))))(branch1): Sequential((0): AvgPool2d(kernel_size=(64, 64), stride=(64, 64), padding=0)(1): Sequential((0): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(2): ReLU(inplace))(branch2): Sequential((0): AvgPool2d(kernel_size=(32, 32), stride=(32, 32), padding=0)(1): Sequential((0): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(2): ReLU(inplace))(branch3): Sequential((0): AvgPool2d(kernel_size=(16, 16), stride=(16, 16), padding=0)(1): Sequential((0): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(2): ReLU(inplace))(branch4): Sequential((0): AvgPool2d(kernel_size=(8, 8), stride=(8, 8), padding=0)(1): Sequential((0): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(2): ReLU(inplace))(lastconv): Sequential((0): Sequential((0): Conv2d(320, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(1): ReLU(inplace)(2): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1), bias=False))
)
放大看大图我在gedit里面的笔记,这个是960*540图在前向传播过程中各个阶段的特征图维度变化。最终对于任意一幅图像,得到320通道的原图1/4尺寸的特征图。记住这个1/4。因为匹配就是在1/4尺寸上进行匹配的,所以后面平移(视差0、1、2、3.。。)就是maxdisp/4
这篇关于PSMNet:Pyramid Stereo Matching Network学习测试笔记04-特征提取部分前向传播的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!