Elasticsearch:使用 semantic_text 进行语义搜索

2024-08-23 23:52

本文主要是介绍Elasticsearch:使用 semantic_text 进行语义搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

警告:截止 8.15 版本,此功能处于测试阶段,可能会发生变化。设计和代码不如官方 GA 功能成熟,并且按原样提供,不提供任何保证。测试版功能不受官方 GA 功能的支持 SLA 约束。

本教程向你展示如何使用 semantic text 功能对数据执行语义搜索。

语义文本通过在提取时提供推理并自动提供合理的默认值来简化推理工作流程。你无需定义与模型相关的设置和参数,也无需创建推理提取管道。

在 Elastic Stack 中使用 semantic search 的推荐方法是遵循 semantic_text 工作流程。当你需要更好地控制索引和查询设置时,你仍然可以使用完整的推理工作流程(请参阅本教程以查看该过程)。

本教程使用 elser service 进行演示,但你可以使用 inference API 提供的任何服务及其支持的模型。

要求

要使用 semantic_text 字段类型,你必须使用 Create inference API 在集群中部署推理端点。如果你还不知道如何部署 ELSER 到你的集群里,请参考文章 “Elasticsearch:部署 ELSER - Elastic Learned Sparse EncoderR”。

更多阅读:Elasticsearch:使用 semantic_text 简化语义搜索。

创建推理端点

使用 Create inference API 创建推理端点:

PUT _inference/sparse_embedding/my-elser-model /* 1 */
{"service": "elser", /* 2 */"service_settings": {"num_allocations": 1,"num_threads": 1}
}

如果你已经安装完毕并部署好,你可以在机器学习页面查看:

  • 任务类型为路径中的 sparse_embedding,因为将使用 elser 服务,并且 ELSER 创建稀疏向量。inference_id 为 my-elser-model。
  • 本示例中使用了 elser 服务。

注意:使用 Kibana 控制台时,你可能会在响应中看到 502 bad gateway 错误。此错误通常仅反映超时,而模型在后台下载。你可以在机器学习 UI 中检查下载进度。如果使用 Python 客户端,你可以将超时参数设置为更高的值。

创建索引映射

必须创建目标索引的映射 - 包含推理端点将根据你的输入文本生成的嵌入的索引。目标索引必须具有具有 semantic_text 字段类型的字段,以索引所用推理端点的输出。

PUT semantic-embeddings
{"mappings": {"properties": {"semantic_text": { /* 1 */"type": "semantic_text", /* 2 */ "inference_id": "my-elser-model" /* 3 */ },"content": { /* 4 */"type": "text","copy_to": "semantic_text" }}}
}
  • 包含生成的嵌入的字段的名称。
  • 包含嵌入的字段是 semantic_text 字段。
  • inference_id 是你在上一步中创建的推理端点。它将用于根据输入文本生成嵌入。每次你将数据导入相关的 semantic_text 字段时,此端点都将用于创建文本的向量表示。
  • 用于存储在重新索引数据步骤中从源索引 Reindex 的文本的字段。
  • 存储在内容字段中的文本数据将被复制到 semantic_text 并由推理端点处理。semantic_text 字段将存储基于输入数据生成的嵌入。

加载数据

在此步骤中,你将加载稍后用于从中创建嵌入的数据。

使用 msmarco-passagetest2019-top1000 数据集,它是 MS MARCO Passage Ranking 数据集的子集。它由 200 个查询组成,每个查询都附有相关文本段落列表。所有唯一段落及其 ID 都已从该数据集中提取并编译为 tsv 文件。

下载文件并使用机器学习 UI 中的数据可视化工具将其上传到你的集群。将名称 id 分配给第一列,将内容分配给第二列。索引名称为 test-data。上传完成后,你可以看到一个名为 test-data 的索引,其中包含 182469 个文档。

如果你想了解加载数据的完整步骤,请参阅文章 “Elasticsearch:使用 ELSER 进行语义搜索 - sparse_vector”。

重新索引数据

通过将数据从 test-data 索引重新索引到 semantic-embeddings 索引,从文本创建嵌入。content 字段中的数据将重新索引到目标索引的 content 字段中。内容字段数据将作为索引映射创建步骤中设置的 copy_to 参数的结果复制到 semantic_text 字段。复制的数据将由与 semantic_text 语义文本字段关联的推理端点处理。

POST _reindex?wait_for_completion=false
{"source": {"index": "test-data","size": 10  /* 1 */},"dest": {"index": "semantic-embeddings"}
}
  • 重新索引的默认批次大小为 1000。将大小减小到较小的数字可以加快重新索引过程的更新速度,从而使你能够密切跟踪进度并尽早发现错误。

该调用返回一个任务 ID 来监控进度:

GET _tasks/<task_id>
GET _tasks/022z5o7HRqaGwOTjIMMZSw:1469327

如果你不想等到重新索引过程完全完成,建议取消重新索引过程,这对于分配了少量资源的推理端点来说可能会花费很长时间:

POST _tasks/<task_id>/_cancel

语义搜索

在数据集通过嵌入丰富后,你可以使用语义搜索查询数据。在语义查询类型中提供 semantic_text 字段名称和查询文本。用于生成 semantic_text 字段嵌入的推理端点将用于处理查询文本。

GET semantic-embeddings/_search
{"query": {"semantic": {"field": "semantic_text", /* 1 */"query": "How to avoid muscle soreness while running?"  /* 2 */}}
}
  1. 你要执行搜索的 semantic_text 字段。
  2. 查询文本。

结果,你将收到来自语义嵌入索引的、含义与查询最接近的前 10 个文档:

这篇关于Elasticsearch:使用 semantic_text 进行语义搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1100854

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected