基于二叉堆优化的迪杰斯特拉算法

2024-08-23 16:44

本文主要是介绍基于二叉堆优化的迪杰斯特拉算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言介绍

迪杰斯特拉(Dijkstra)算法是1959年由荷兰计算机科学家Dijkstra提出的算法,用于在加权图中计算从单个源点到其余节点的最短距离。采用贪心策略,每次选取到源点最近且未被访问的节点,遍历它的邻居节点更新它们到源点的最短距离,直到扩展完成。

算法诞生

在迪杰斯特拉算法出现,有这样一个问题:在荷兰的任意选取两个城市,它们的最短距离是多少?在当时,这个问题最好的算法运行时间随着城市规模呈立方增长,而迪杰斯特拉的算法运行时间只会随着城市规模呈平方增长。有趣的是,这个算法是他和未婚妻Maria C. Debets在一个咖啡馆露台喝咖啡的时候,花了二十分钟想出来的。直到今天他的算法还被广泛应用,比如交通路线规划、网络路由等等。此段部分摘自26岁发明最短路径算法,47岁斩获图灵奖。

迪杰斯特拉算法

原始算法

原始的迪杰斯特拉算法步骤大致分为以下几个步骤:

1.初始化距离数组和访问数组(bool类型),并置源点位置为0;

2.遍历选择离源点最近且未被访问的顶点,置其为被访问;

3.依次遍历它的邻居节点并尝试更新与源点的最短距离;

4.直到所有节点遍历结束,扩展完成。

 上述过程的java代码如下:

    public int[] dijkstra(int[][] adj,int source){int n=adj.length;int[] shortest = new int[n];Arrays.fill(shortest,Integer.MAX_VALUE/2);shortest[source]=0;boolean[] visited = new boolean[n];for(int i=0;i<n;i++){int k=-1;for(int j=0;j<n;j++){if(!visited[j]&&(k==-1||shortest[j]<shortest[k]))k=j;}visited[k]=true;for(int m=0;m<n;m++){if(adj[k][m]!=Integer.MAX_VALUE&&shortest[k]+adj[k][m]<shortest[m])shortest[m]=shortest[k]+adj[k][m];}}return shortest;}

原始算法的时间复杂度为O(V^2),空间复杂度为O(V^2),其中V为节点个数。我们可以发现,该算法需要开辟O(V^2)的空间来存储图的信息,并且时间复杂度也是平方级别的,所以它处理小规模图的时候够用,但是在处理大规模节点的时候,空间会溢出,时间上也会超时。因此在节点较多的情况下,原始算法不再适用,所以考虑使用一些数据结构来进行优化。

二叉堆优化

考虑这样一种场景,一个图的节点数是一个大值V,而图中的边E远小于V^2,那么我们在存储图的时候完全可以不用邻接矩阵而是邻接表,可以节省大量空间,并且我们在寻找距离源点最近的节点的时候,原始做法是遍历一遍数组,这边可以使用小根堆的方式来实现,调整的时间复杂度只有log(V)级别,这样我们就描述完了对原始算法的优化点,具体流程可以是这样:

1.初始化距离数组和访问数组(bool类型),读取边并构造图的邻接表;

2.初始化一个小根堆实现的优先级队列,初始的源节点入队,距离源节点的长度为0;

3.队列不为空时,每次弹出一个元素,得到该节点和对应的最短距离,置访问数组对应位置为true,并尝试更新它的邻居节点的当前最短距离;

4.重复操作3,结束之后距离数组中的对应位置存储的值即为各个节点到达源点的最短距离。

上述过程的java代码如下:

public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();//节点个数int e=scanner.nextInt();//边个数for(int i=0;i<N;i++){graphAdj[i]=new ArrayList<>();}for(int i=0;i<e;i++){int u = scanner.nextInt();int v = scanner.nextInt();int w = scanner.nextInt();addEdge(u,v,w);}dijkstra(0);//shortest中0到n-1元素即为到源点0的最短距离。}static int N=100010;static List<Edge>[] graphAdj=new ArrayList[N];static int[] shortest=new int[N];static boolean[] visited=new boolean[N];static class Edge{int to;int weight;Edge(int to,int weight){this.to=to;this.weight=weight;}}public static void dijkstra(int source){PriorityQueue<int[]> priorityQueue = new PriorityQueue<>(new Comparator<int[]>() {@Overridepublic int compare(int[] o1, int[] o2) {return o1[1]-o2[1];}});priorityQueue.offer(new int[]{source,0});Arrays.fill(shortest,Integer.MAX_VALUE);shortest[source]=0;while (!priorityQueue.isEmpty()){int[] poll = priorityQueue.poll();int node=poll[0];int distance=poll[1];if(visited[node])continue;visited[node]=true;for(Edge edge:graphAdj[node]){int to = edge.to;int weight = edge.weight;if(distance+weight<shortest[to]){shortest[to]=distance+weight;priorityQueue.offer(new int[]{to,shortest[to]});}}}}public static void addEdge(int u,int v,int w){graphAdj[u].add(new Edge(v,w));graphAdj[v].add(new Edge(u,w));}

代码方面我写的比较完善,所以看上去比原始算法更长,只要多了个构造内部类Edge和添加边的逻辑,然后核心思想在dijkstra(int source)方法中体现,为了应对更大的图,我们直接初始化的时候将N设置的比较大。

复杂度分析

时间复杂度

初始化距离数组时间复杂度为O(V),用堆存储节点和距离源点的当前最小长度,调整的时候时间复杂度为O(logV),每次选取节点之后会遍历边尝试更新邻居节点的最小距离,所以总的时间复杂度为O((V+E)logV)。

空间复杂度

需要距离数组大小O(V),采用邻接表存储图的信息,这块空间复杂度为O(V+E)。所以总的空间复杂度为O(V+E)。

总结

迪杰斯特拉算法在求解有权图的单源最短路径上表现优秀,如果图的规模比较小,采用原始算法即可应对,如果图的节点数V比较多并且图中的边数远小于V^2,那么可以使用二叉堆优化的迪杰斯特拉算法可以有效降低时空复杂度。最后,小伙伴们如果有什么想法欢迎评论区交流:)

这篇关于基于二叉堆优化的迪杰斯特拉算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099941

相关文章

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML