概率统计Python计算:连续型随机变量分布(norm)

2024-08-22 22:58

本文主要是介绍概率统计Python计算:连续型随机变量分布(norm),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
scipy.stats的norm对象表示正态分布,下表说明norm的几个常用函数。

函数名参数功能
rvs(loc, scale, size)loc,scale:分布参数 μ \mu μ σ \sigma σ,缺省值分别为0和1,size:产生的随机数个数,缺省值为1产生size个随机数
pdf(x, loc, scale)x:自变量取值,loc,scale:与上同概率密度函数 f ( x ) f(x) f(x)
cdf(x, loc, scale)x,loc,scale:与上同累积概率函数(分布函数) F ( x ) F(x) F(x)
ppf(q, loc, scale)q:分位点函数自变量,loc,scale:与上同分布函数的反函数 F − 1 ( q ) F^{-1}(q) F1(q)
sf(x, loc, scale)x:自变量取值,loc,scale:与上同残存函数 1 − F ( x ) 1-F(x) 1F(x)
isf(q, loc, scale)q:分位点函数自变量,loc,scale:与上同残存函数的反函数 S − 1 ( q ) S^{-1}(q) S1(q)

注意norm对象的各函数的参数loc表示对称轴位置,此参数对应正态分布的参数 μ \mu μ,缺省值为0。scale表示缩放比例,对应正态分布参数的 σ 2 \sigma^2 σ2算术根 σ \sigma σ,缺省值为1。
例1 X X X~ N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),试计算 P ( μ − σ < X < μ + σ ) P(\mu-\sigma<X<\mu+\sigma) P(μσ<X<μ+σ) P ( μ − 2 σ < X < μ + 2 σ ) P(\mu-2\sigma<X<\mu+2\sigma) P(μ2σ<X<μ+2σ) P ( μ − 3 σ < X < μ + 3 σ ) P(\mu-3\sigma<X<\mu+3\sigma) P(μ3σ<X<μ+3σ)

P ( μ − σ < X < μ + σ ) = P ( − σ < X − μ < σ ) = P ( − 1 < X − μ σ < 1 ) = 2 Φ ( 1 ) − 1. P(\mu-\sigma<X<\mu+\sigma)=P(-\sigma<X-\mu<\sigma)=P\left(-1<\frac{X-\mu}{\sigma}<1\right)=2\Phi(1)-1. P(μσ<X<μ+σ)=P(σ<Xμ<σ)=P(1<σXμ<1)=(1)1.
相仿地可得 P ( μ − 2 σ < X < μ + 2 σ ) = 2 Φ ( 2 ) − 1 = 0.9544 P(\mu-2\sigma<X<\mu+2\sigma)= 2\Phi(2)-1=0.9544 P(μ2σ<X<μ+2σ)=(2)1=0.9544 P ( μ − 3 σ < X < μ + 3 σ ) = 2 Φ ( 3 ) − 1 P(\mu-3\sigma<X<\mu+3\sigma)= 2\Phi(3)-1 P(μ3σ<X<μ+3σ)=(3)1。下列代码完成计算

p1=2*norm.cdf(1)-1			#计算2Phi(1)-1
p2=2*norm.cdf(2)-1			#计算2Phi(2)-1
p3=2*norm.cdf(3)-1			#计算2Phi(3)-1
print('P(mu-sigma<X<mu+sigma)=%.4f'%p1)
print('P(mu-2sigma<X<mu+2sigma)=%.4f'%p2)
print('P(mu-3sigma<X<mu+3sigma)=%.4f'%p3)

程序的第2~4行计算的是标准正态分布的分布函数在1、2、3处的值 Φ ( 1 ) \Phi(1) Φ(1) Φ ( 2 ) \Phi(2) Φ(2) Φ ( 3 ) \Phi(3) Φ(3)的值,故调用norm(第1行导入)的cdf函数并使用loc和scale参数的默认值0和1。程序运行输出:

P(mu-sigma<X<mu+sigma)=0.6827
P(mu-2sigma<X<mu+2sigma)=0.9545
P(mu-3sigma<X<mu+3sigma)=0.9973

由此可见,服从参数为 μ \mu μ σ 2 \sigma^2 σ2的正态分布的随机变量 X X X其值落在区间 ( μ − 3 σ , μ + 3 σ ) (\mu-3\sigma, \mu+3\sigma) (μ3σ,μ+3σ)内几乎是肯定的事。这就是所谓的“3 σ \sigma σ法则”,其几何意义如图2-15所示。
在这里插入图片描述
例2 某企业准备通过招聘考试招收职工,根据考试分数,从高分到低分分别录取正式职工280人,临时工20人。报考的人数是1657,考试满分是400分。已知考试成绩 X X X~ N ( 166 , σ 2 ) N(166, \sigma^2) N(166,σ2),其中 σ 2 \sigma^2 σ2未知。此外,360分以上的高分考生31人。设某考生得256分,问他能否被录取?能否被聘为正式工?
:由于考试成绩 X X X~ N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),其中 μ = 166 \mu=166 μ=166 σ 2 \sigma^2 σ2未知。设 X X X的分布函数为 F ( x ) F(x) F(x)。按题意有 P ( X ≥ 360 ) = 31 / 1657 P(X\geq 360)=31/1657 P(X360)=31/1657,即 P ( X ≤ 360 ) = 1 − P ( X ≥ 360 ) = 1 − 31 / 1657 = 1626 / 1657 P(X\leq 360)=1-P(X\geq 360)=1-31/1657=1626/1657 P(X360)=1P(X360)=131/1657=1626/1657。利用标准化
1626 1657 = P ( X ≤ 360 ) = F ( 360 ) = Φ ( 360 − 166 σ ) = Φ ( 194 σ ) . \frac{1626}{1657}=P(X\leq 360)=F(360)=\Phi\left(\frac{360-166}{\sigma}\right)=\Phi\left(\frac{194}{\sigma}\right). 16571626=P(X360)=F(360)=Φ(σ360166)=Φ(σ194).
σ = 194 / Φ − 1 ( 1626 1657 ) \sigma=194/\Phi^{-1}\left(\frac{1626}{1657}\right) σ=194/Φ1(16571626)。记 X X X的残存函数 S ( x ) = 1 − F ( x ) S(x)=1-F(x) S(x)=1F(x),设录取员工的最低分数为 x 1 x_1 x1,则按题意有 S ( x 1 ) = 1 − F ( x 1 ) = P ( X ≥ x 1 ) = 300 / 1657 S(x_1)=1-F(x_1)=P(X\geq x_1)=300/1657 S(x1)=1F(x1)=P(Xx1)=300/1657,于是 x 1 = S − 1 ( 300 1657 ) x_1=S^{-1}\left(\frac{300}{1657}\right) x1=S1(1657300)。相仿地,设录取的正式员工的最低分数为 x 2 x_2 x2,则 x 2 = S − 1 ( 280 1657 ) x_2=S^{-1}\left(\frac{280}{1657}\right) x2=S1(1657280)。分别比较考生成绩与 x 1 x_1 x1 x 2 x_2 x2的大小,即可判断他是否能被录取为临时工,或正式工。下列代码完成本例计算。

from scipy.stats import norm            #导入norm
mu=166                                  #mu=166
scor=256                                #考生成绩scor
q1=31/1657                              #高分概率q1
q2=300/1657                             #录取概率q2
q3=280/1657                             #录取为正式员工概率q3
x=norm.isf(q=q1)                        #x=Phi^(-1)(1-q1)
sigma=(360-mu)/x                        #计算sigma
x1=norm.isf(q=q2, loc=166, scale=sigma) #x1=F^(-1)(1-q2)为最低录取分数
x2=norm.isf(q=q3, loc=166, scale=sigma) #x2=F^(-1)(1-q3)正式员工最低分数
print('x1<=scor is %s'%(x1<=scor))      #比较x1与scor
print('x2<=scor is %s'%(x2<=scor))      #比较x2与scor

程序代码逐句均有注释,读者不难理解。此处着重强调第7行、第9行和第10行调用残余函数的反函数isf,分别传递 q 1 q_1 q1 q 2 q_2 q2 q 3 q_3 q3计算 Φ − 1 ( 1 − q 1 ) \Phi^{-1}(1-q_1) Φ1(1q1) F − 1 ( 1 − q 2 ) F^{-1}(1-q_2) F1(1q2) F − 1 ( 1 − q 3 ) F^{-1}(1-q_3) F1(1q3)。运行程序2.14,输出:

x1<=scor is True
x2<=scor is True

这意味着该考生不但能被录取,还能成为正式工。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:连续型随机变量分布(norm)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097643

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(