概率统计Python计算:连续型随机变量分布(norm)

2024-08-22 22:58

本文主要是介绍概率统计Python计算:连续型随机变量分布(norm),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
scipy.stats的norm对象表示正态分布,下表说明norm的几个常用函数。

函数名参数功能
rvs(loc, scale, size)loc,scale:分布参数 μ \mu μ σ \sigma σ,缺省值分别为0和1,size:产生的随机数个数,缺省值为1产生size个随机数
pdf(x, loc, scale)x:自变量取值,loc,scale:与上同概率密度函数 f ( x ) f(x) f(x)
cdf(x, loc, scale)x,loc,scale:与上同累积概率函数(分布函数) F ( x ) F(x) F(x)
ppf(q, loc, scale)q:分位点函数自变量,loc,scale:与上同分布函数的反函数 F − 1 ( q ) F^{-1}(q) F1(q)
sf(x, loc, scale)x:自变量取值,loc,scale:与上同残存函数 1 − F ( x ) 1-F(x) 1F(x)
isf(q, loc, scale)q:分位点函数自变量,loc,scale:与上同残存函数的反函数 S − 1 ( q ) S^{-1}(q) S1(q)

注意norm对象的各函数的参数loc表示对称轴位置,此参数对应正态分布的参数 μ \mu μ,缺省值为0。scale表示缩放比例,对应正态分布参数的 σ 2 \sigma^2 σ2算术根 σ \sigma σ,缺省值为1。
例1 X X X~ N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),试计算 P ( μ − σ < X < μ + σ ) P(\mu-\sigma<X<\mu+\sigma) P(μσ<X<μ+σ) P ( μ − 2 σ < X < μ + 2 σ ) P(\mu-2\sigma<X<\mu+2\sigma) P(μ2σ<X<μ+2σ) P ( μ − 3 σ < X < μ + 3 σ ) P(\mu-3\sigma<X<\mu+3\sigma) P(μ3σ<X<μ+3σ)

P ( μ − σ < X < μ + σ ) = P ( − σ < X − μ < σ ) = P ( − 1 < X − μ σ < 1 ) = 2 Φ ( 1 ) − 1. P(\mu-\sigma<X<\mu+\sigma)=P(-\sigma<X-\mu<\sigma)=P\left(-1<\frac{X-\mu}{\sigma}<1\right)=2\Phi(1)-1. P(μσ<X<μ+σ)=P(σ<Xμ<σ)=P(1<σXμ<1)=(1)1.
相仿地可得 P ( μ − 2 σ < X < μ + 2 σ ) = 2 Φ ( 2 ) − 1 = 0.9544 P(\mu-2\sigma<X<\mu+2\sigma)= 2\Phi(2)-1=0.9544 P(μ2σ<X<μ+2σ)=(2)1=0.9544 P ( μ − 3 σ < X < μ + 3 σ ) = 2 Φ ( 3 ) − 1 P(\mu-3\sigma<X<\mu+3\sigma)= 2\Phi(3)-1 P(μ3σ<X<μ+3σ)=(3)1。下列代码完成计算

p1=2*norm.cdf(1)-1			#计算2Phi(1)-1
p2=2*norm.cdf(2)-1			#计算2Phi(2)-1
p3=2*norm.cdf(3)-1			#计算2Phi(3)-1
print('P(mu-sigma<X<mu+sigma)=%.4f'%p1)
print('P(mu-2sigma<X<mu+2sigma)=%.4f'%p2)
print('P(mu-3sigma<X<mu+3sigma)=%.4f'%p3)

程序的第2~4行计算的是标准正态分布的分布函数在1、2、3处的值 Φ ( 1 ) \Phi(1) Φ(1) Φ ( 2 ) \Phi(2) Φ(2) Φ ( 3 ) \Phi(3) Φ(3)的值,故调用norm(第1行导入)的cdf函数并使用loc和scale参数的默认值0和1。程序运行输出:

P(mu-sigma<X<mu+sigma)=0.6827
P(mu-2sigma<X<mu+2sigma)=0.9545
P(mu-3sigma<X<mu+3sigma)=0.9973

由此可见,服从参数为 μ \mu μ σ 2 \sigma^2 σ2的正态分布的随机变量 X X X其值落在区间 ( μ − 3 σ , μ + 3 σ ) (\mu-3\sigma, \mu+3\sigma) (μ3σ,μ+3σ)内几乎是肯定的事。这就是所谓的“3 σ \sigma σ法则”,其几何意义如图2-15所示。
在这里插入图片描述
例2 某企业准备通过招聘考试招收职工,根据考试分数,从高分到低分分别录取正式职工280人,临时工20人。报考的人数是1657,考试满分是400分。已知考试成绩 X X X~ N ( 166 , σ 2 ) N(166, \sigma^2) N(166,σ2),其中 σ 2 \sigma^2 σ2未知。此外,360分以上的高分考生31人。设某考生得256分,问他能否被录取?能否被聘为正式工?
:由于考试成绩 X X X~ N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),其中 μ = 166 \mu=166 μ=166 σ 2 \sigma^2 σ2未知。设 X X X的分布函数为 F ( x ) F(x) F(x)。按题意有 P ( X ≥ 360 ) = 31 / 1657 P(X\geq 360)=31/1657 P(X360)=31/1657,即 P ( X ≤ 360 ) = 1 − P ( X ≥ 360 ) = 1 − 31 / 1657 = 1626 / 1657 P(X\leq 360)=1-P(X\geq 360)=1-31/1657=1626/1657 P(X360)=1P(X360)=131/1657=1626/1657。利用标准化
1626 1657 = P ( X ≤ 360 ) = F ( 360 ) = Φ ( 360 − 166 σ ) = Φ ( 194 σ ) . \frac{1626}{1657}=P(X\leq 360)=F(360)=\Phi\left(\frac{360-166}{\sigma}\right)=\Phi\left(\frac{194}{\sigma}\right). 16571626=P(X360)=F(360)=Φ(σ360166)=Φ(σ194).
σ = 194 / Φ − 1 ( 1626 1657 ) \sigma=194/\Phi^{-1}\left(\frac{1626}{1657}\right) σ=194/Φ1(16571626)。记 X X X的残存函数 S ( x ) = 1 − F ( x ) S(x)=1-F(x) S(x)=1F(x),设录取员工的最低分数为 x 1 x_1 x1,则按题意有 S ( x 1 ) = 1 − F ( x 1 ) = P ( X ≥ x 1 ) = 300 / 1657 S(x_1)=1-F(x_1)=P(X\geq x_1)=300/1657 S(x1)=1F(x1)=P(Xx1)=300/1657,于是 x 1 = S − 1 ( 300 1657 ) x_1=S^{-1}\left(\frac{300}{1657}\right) x1=S1(1657300)。相仿地,设录取的正式员工的最低分数为 x 2 x_2 x2,则 x 2 = S − 1 ( 280 1657 ) x_2=S^{-1}\left(\frac{280}{1657}\right) x2=S1(1657280)。分别比较考生成绩与 x 1 x_1 x1 x 2 x_2 x2的大小,即可判断他是否能被录取为临时工,或正式工。下列代码完成本例计算。

from scipy.stats import norm            #导入norm
mu=166                                  #mu=166
scor=256                                #考生成绩scor
q1=31/1657                              #高分概率q1
q2=300/1657                             #录取概率q2
q3=280/1657                             #录取为正式员工概率q3
x=norm.isf(q=q1)                        #x=Phi^(-1)(1-q1)
sigma=(360-mu)/x                        #计算sigma
x1=norm.isf(q=q2, loc=166, scale=sigma) #x1=F^(-1)(1-q2)为最低录取分数
x2=norm.isf(q=q3, loc=166, scale=sigma) #x2=F^(-1)(1-q3)正式员工最低分数
print('x1<=scor is %s'%(x1<=scor))      #比较x1与scor
print('x2<=scor is %s'%(x2<=scor))      #比较x2与scor

程序代码逐句均有注释,读者不难理解。此处着重强调第7行、第9行和第10行调用残余函数的反函数isf,分别传递 q 1 q_1 q1 q 2 q_2 q2 q 3 q_3 q3计算 Φ − 1 ( 1 − q 1 ) \Phi^{-1}(1-q_1) Φ1(1q1) F − 1 ( 1 − q 2 ) F^{-1}(1-q_2) F1(1q2) F − 1 ( 1 − q 3 ) F^{-1}(1-q_3) F1(1q3)。运行程序2.14,输出:

x1<=scor is True
x2<=scor is True

这意味着该考生不但能被录取,还能成为正式工。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:连续型随机变量分布(norm)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097643

相关文章

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主