概率统计Python计算:连续型随机变量分布(norm)

2024-08-22 22:58

本文主要是介绍概率统计Python计算:连续型随机变量分布(norm),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
scipy.stats的norm对象表示正态分布,下表说明norm的几个常用函数。

函数名参数功能
rvs(loc, scale, size)loc,scale:分布参数 μ \mu μ σ \sigma σ,缺省值分别为0和1,size:产生的随机数个数,缺省值为1产生size个随机数
pdf(x, loc, scale)x:自变量取值,loc,scale:与上同概率密度函数 f ( x ) f(x) f(x)
cdf(x, loc, scale)x,loc,scale:与上同累积概率函数(分布函数) F ( x ) F(x) F(x)
ppf(q, loc, scale)q:分位点函数自变量,loc,scale:与上同分布函数的反函数 F − 1 ( q ) F^{-1}(q) F1(q)
sf(x, loc, scale)x:自变量取值,loc,scale:与上同残存函数 1 − F ( x ) 1-F(x) 1F(x)
isf(q, loc, scale)q:分位点函数自变量,loc,scale:与上同残存函数的反函数 S − 1 ( q ) S^{-1}(q) S1(q)

注意norm对象的各函数的参数loc表示对称轴位置,此参数对应正态分布的参数 μ \mu μ,缺省值为0。scale表示缩放比例,对应正态分布参数的 σ 2 \sigma^2 σ2算术根 σ \sigma σ,缺省值为1。
例1 X X X~ N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),试计算 P ( μ − σ < X < μ + σ ) P(\mu-\sigma<X<\mu+\sigma) P(μσ<X<μ+σ) P ( μ − 2 σ < X < μ + 2 σ ) P(\mu-2\sigma<X<\mu+2\sigma) P(μ2σ<X<μ+2σ) P ( μ − 3 σ < X < μ + 3 σ ) P(\mu-3\sigma<X<\mu+3\sigma) P(μ3σ<X<μ+3σ)

P ( μ − σ < X < μ + σ ) = P ( − σ < X − μ < σ ) = P ( − 1 < X − μ σ < 1 ) = 2 Φ ( 1 ) − 1. P(\mu-\sigma<X<\mu+\sigma)=P(-\sigma<X-\mu<\sigma)=P\left(-1<\frac{X-\mu}{\sigma}<1\right)=2\Phi(1)-1. P(μσ<X<μ+σ)=P(σ<Xμ<σ)=P(1<σXμ<1)=(1)1.
相仿地可得 P ( μ − 2 σ < X < μ + 2 σ ) = 2 Φ ( 2 ) − 1 = 0.9544 P(\mu-2\sigma<X<\mu+2\sigma)= 2\Phi(2)-1=0.9544 P(μ2σ<X<μ+2σ)=(2)1=0.9544 P ( μ − 3 σ < X < μ + 3 σ ) = 2 Φ ( 3 ) − 1 P(\mu-3\sigma<X<\mu+3\sigma)= 2\Phi(3)-1 P(μ3σ<X<μ+3σ)=(3)1。下列代码完成计算

p1=2*norm.cdf(1)-1			#计算2Phi(1)-1
p2=2*norm.cdf(2)-1			#计算2Phi(2)-1
p3=2*norm.cdf(3)-1			#计算2Phi(3)-1
print('P(mu-sigma<X<mu+sigma)=%.4f'%p1)
print('P(mu-2sigma<X<mu+2sigma)=%.4f'%p2)
print('P(mu-3sigma<X<mu+3sigma)=%.4f'%p3)

程序的第2~4行计算的是标准正态分布的分布函数在1、2、3处的值 Φ ( 1 ) \Phi(1) Φ(1) Φ ( 2 ) \Phi(2) Φ(2) Φ ( 3 ) \Phi(3) Φ(3)的值,故调用norm(第1行导入)的cdf函数并使用loc和scale参数的默认值0和1。程序运行输出:

P(mu-sigma<X<mu+sigma)=0.6827
P(mu-2sigma<X<mu+2sigma)=0.9545
P(mu-3sigma<X<mu+3sigma)=0.9973

由此可见,服从参数为 μ \mu μ σ 2 \sigma^2 σ2的正态分布的随机变量 X X X其值落在区间 ( μ − 3 σ , μ + 3 σ ) (\mu-3\sigma, \mu+3\sigma) (μ3σ,μ+3σ)内几乎是肯定的事。这就是所谓的“3 σ \sigma σ法则”,其几何意义如图2-15所示。
在这里插入图片描述
例2 某企业准备通过招聘考试招收职工,根据考试分数,从高分到低分分别录取正式职工280人,临时工20人。报考的人数是1657,考试满分是400分。已知考试成绩 X X X~ N ( 166 , σ 2 ) N(166, \sigma^2) N(166,σ2),其中 σ 2 \sigma^2 σ2未知。此外,360分以上的高分考生31人。设某考生得256分,问他能否被录取?能否被聘为正式工?
:由于考试成绩 X X X~ N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),其中 μ = 166 \mu=166 μ=166 σ 2 \sigma^2 σ2未知。设 X X X的分布函数为 F ( x ) F(x) F(x)。按题意有 P ( X ≥ 360 ) = 31 / 1657 P(X\geq 360)=31/1657 P(X360)=31/1657,即 P ( X ≤ 360 ) = 1 − P ( X ≥ 360 ) = 1 − 31 / 1657 = 1626 / 1657 P(X\leq 360)=1-P(X\geq 360)=1-31/1657=1626/1657 P(X360)=1P(X360)=131/1657=1626/1657。利用标准化
1626 1657 = P ( X ≤ 360 ) = F ( 360 ) = Φ ( 360 − 166 σ ) = Φ ( 194 σ ) . \frac{1626}{1657}=P(X\leq 360)=F(360)=\Phi\left(\frac{360-166}{\sigma}\right)=\Phi\left(\frac{194}{\sigma}\right). 16571626=P(X360)=F(360)=Φ(σ360166)=Φ(σ194).
σ = 194 / Φ − 1 ( 1626 1657 ) \sigma=194/\Phi^{-1}\left(\frac{1626}{1657}\right) σ=194/Φ1(16571626)。记 X X X的残存函数 S ( x ) = 1 − F ( x ) S(x)=1-F(x) S(x)=1F(x),设录取员工的最低分数为 x 1 x_1 x1,则按题意有 S ( x 1 ) = 1 − F ( x 1 ) = P ( X ≥ x 1 ) = 300 / 1657 S(x_1)=1-F(x_1)=P(X\geq x_1)=300/1657 S(x1)=1F(x1)=P(Xx1)=300/1657,于是 x 1 = S − 1 ( 300 1657 ) x_1=S^{-1}\left(\frac{300}{1657}\right) x1=S1(1657300)。相仿地,设录取的正式员工的最低分数为 x 2 x_2 x2,则 x 2 = S − 1 ( 280 1657 ) x_2=S^{-1}\left(\frac{280}{1657}\right) x2=S1(1657280)。分别比较考生成绩与 x 1 x_1 x1 x 2 x_2 x2的大小,即可判断他是否能被录取为临时工,或正式工。下列代码完成本例计算。

from scipy.stats import norm            #导入norm
mu=166                                  #mu=166
scor=256                                #考生成绩scor
q1=31/1657                              #高分概率q1
q2=300/1657                             #录取概率q2
q3=280/1657                             #录取为正式员工概率q3
x=norm.isf(q=q1)                        #x=Phi^(-1)(1-q1)
sigma=(360-mu)/x                        #计算sigma
x1=norm.isf(q=q2, loc=166, scale=sigma) #x1=F^(-1)(1-q2)为最低录取分数
x2=norm.isf(q=q3, loc=166, scale=sigma) #x2=F^(-1)(1-q3)正式员工最低分数
print('x1<=scor is %s'%(x1<=scor))      #比较x1与scor
print('x2<=scor is %s'%(x2<=scor))      #比较x2与scor

程序代码逐句均有注释,读者不难理解。此处着重强调第7行、第9行和第10行调用残余函数的反函数isf,分别传递 q 1 q_1 q1 q 2 q_2 q2 q 3 q_3 q3计算 Φ − 1 ( 1 − q 1 ) \Phi^{-1}(1-q_1) Φ1(1q1) F − 1 ( 1 − q 2 ) F^{-1}(1-q_2) F1(1q2) F − 1 ( 1 − q 3 ) F^{-1}(1-q_3) F1(1q3)。运行程序2.14,输出:

x1<=scor is True
x2<=scor is True

这意味着该考生不但能被录取,还能成为正式工。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:连续型随机变量分布(norm)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097643

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核