概率统计Python计算:连续型随机变量分布(norm)

2024-08-22 22:58

本文主要是介绍概率统计Python计算:连续型随机变量分布(norm),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
scipy.stats的norm对象表示正态分布,下表说明norm的几个常用函数。

函数名参数功能
rvs(loc, scale, size)loc,scale:分布参数 μ \mu μ σ \sigma σ,缺省值分别为0和1,size:产生的随机数个数,缺省值为1产生size个随机数
pdf(x, loc, scale)x:自变量取值,loc,scale:与上同概率密度函数 f ( x ) f(x) f(x)
cdf(x, loc, scale)x,loc,scale:与上同累积概率函数(分布函数) F ( x ) F(x) F(x)
ppf(q, loc, scale)q:分位点函数自变量,loc,scale:与上同分布函数的反函数 F − 1 ( q ) F^{-1}(q) F1(q)
sf(x, loc, scale)x:自变量取值,loc,scale:与上同残存函数 1 − F ( x ) 1-F(x) 1F(x)
isf(q, loc, scale)q:分位点函数自变量,loc,scale:与上同残存函数的反函数 S − 1 ( q ) S^{-1}(q) S1(q)

注意norm对象的各函数的参数loc表示对称轴位置,此参数对应正态分布的参数 μ \mu μ,缺省值为0。scale表示缩放比例,对应正态分布参数的 σ 2 \sigma^2 σ2算术根 σ \sigma σ,缺省值为1。
例1 X X X~ N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),试计算 P ( μ − σ < X < μ + σ ) P(\mu-\sigma<X<\mu+\sigma) P(μσ<X<μ+σ) P ( μ − 2 σ < X < μ + 2 σ ) P(\mu-2\sigma<X<\mu+2\sigma) P(μ2σ<X<μ+2σ) P ( μ − 3 σ < X < μ + 3 σ ) P(\mu-3\sigma<X<\mu+3\sigma) P(μ3σ<X<μ+3σ)

P ( μ − σ < X < μ + σ ) = P ( − σ < X − μ < σ ) = P ( − 1 < X − μ σ < 1 ) = 2 Φ ( 1 ) − 1. P(\mu-\sigma<X<\mu+\sigma)=P(-\sigma<X-\mu<\sigma)=P\left(-1<\frac{X-\mu}{\sigma}<1\right)=2\Phi(1)-1. P(μσ<X<μ+σ)=P(σ<Xμ<σ)=P(1<σXμ<1)=(1)1.
相仿地可得 P ( μ − 2 σ < X < μ + 2 σ ) = 2 Φ ( 2 ) − 1 = 0.9544 P(\mu-2\sigma<X<\mu+2\sigma)= 2\Phi(2)-1=0.9544 P(μ2σ<X<μ+2σ)=(2)1=0.9544 P ( μ − 3 σ < X < μ + 3 σ ) = 2 Φ ( 3 ) − 1 P(\mu-3\sigma<X<\mu+3\sigma)= 2\Phi(3)-1 P(μ3σ<X<μ+3σ)=(3)1。下列代码完成计算

p1=2*norm.cdf(1)-1			#计算2Phi(1)-1
p2=2*norm.cdf(2)-1			#计算2Phi(2)-1
p3=2*norm.cdf(3)-1			#计算2Phi(3)-1
print('P(mu-sigma<X<mu+sigma)=%.4f'%p1)
print('P(mu-2sigma<X<mu+2sigma)=%.4f'%p2)
print('P(mu-3sigma<X<mu+3sigma)=%.4f'%p3)

程序的第2~4行计算的是标准正态分布的分布函数在1、2、3处的值 Φ ( 1 ) \Phi(1) Φ(1) Φ ( 2 ) \Phi(2) Φ(2) Φ ( 3 ) \Phi(3) Φ(3)的值,故调用norm(第1行导入)的cdf函数并使用loc和scale参数的默认值0和1。程序运行输出:

P(mu-sigma<X<mu+sigma)=0.6827
P(mu-2sigma<X<mu+2sigma)=0.9545
P(mu-3sigma<X<mu+3sigma)=0.9973

由此可见,服从参数为 μ \mu μ σ 2 \sigma^2 σ2的正态分布的随机变量 X X X其值落在区间 ( μ − 3 σ , μ + 3 σ ) (\mu-3\sigma, \mu+3\sigma) (μ3σ,μ+3σ)内几乎是肯定的事。这就是所谓的“3 σ \sigma σ法则”,其几何意义如图2-15所示。
在这里插入图片描述
例2 某企业准备通过招聘考试招收职工,根据考试分数,从高分到低分分别录取正式职工280人,临时工20人。报考的人数是1657,考试满分是400分。已知考试成绩 X X X~ N ( 166 , σ 2 ) N(166, \sigma^2) N(166,σ2),其中 σ 2 \sigma^2 σ2未知。此外,360分以上的高分考生31人。设某考生得256分,问他能否被录取?能否被聘为正式工?
:由于考试成绩 X X X~ N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),其中 μ = 166 \mu=166 μ=166 σ 2 \sigma^2 σ2未知。设 X X X的分布函数为 F ( x ) F(x) F(x)。按题意有 P ( X ≥ 360 ) = 31 / 1657 P(X\geq 360)=31/1657 P(X360)=31/1657,即 P ( X ≤ 360 ) = 1 − P ( X ≥ 360 ) = 1 − 31 / 1657 = 1626 / 1657 P(X\leq 360)=1-P(X\geq 360)=1-31/1657=1626/1657 P(X360)=1P(X360)=131/1657=1626/1657。利用标准化
1626 1657 = P ( X ≤ 360 ) = F ( 360 ) = Φ ( 360 − 166 σ ) = Φ ( 194 σ ) . \frac{1626}{1657}=P(X\leq 360)=F(360)=\Phi\left(\frac{360-166}{\sigma}\right)=\Phi\left(\frac{194}{\sigma}\right). 16571626=P(X360)=F(360)=Φ(σ360166)=Φ(σ194).
σ = 194 / Φ − 1 ( 1626 1657 ) \sigma=194/\Phi^{-1}\left(\frac{1626}{1657}\right) σ=194/Φ1(16571626)。记 X X X的残存函数 S ( x ) = 1 − F ( x ) S(x)=1-F(x) S(x)=1F(x),设录取员工的最低分数为 x 1 x_1 x1,则按题意有 S ( x 1 ) = 1 − F ( x 1 ) = P ( X ≥ x 1 ) = 300 / 1657 S(x_1)=1-F(x_1)=P(X\geq x_1)=300/1657 S(x1)=1F(x1)=P(Xx1)=300/1657,于是 x 1 = S − 1 ( 300 1657 ) x_1=S^{-1}\left(\frac{300}{1657}\right) x1=S1(1657300)。相仿地,设录取的正式员工的最低分数为 x 2 x_2 x2,则 x 2 = S − 1 ( 280 1657 ) x_2=S^{-1}\left(\frac{280}{1657}\right) x2=S1(1657280)。分别比较考生成绩与 x 1 x_1 x1 x 2 x_2 x2的大小,即可判断他是否能被录取为临时工,或正式工。下列代码完成本例计算。

from scipy.stats import norm            #导入norm
mu=166                                  #mu=166
scor=256                                #考生成绩scor
q1=31/1657                              #高分概率q1
q2=300/1657                             #录取概率q2
q3=280/1657                             #录取为正式员工概率q3
x=norm.isf(q=q1)                        #x=Phi^(-1)(1-q1)
sigma=(360-mu)/x                        #计算sigma
x1=norm.isf(q=q2, loc=166, scale=sigma) #x1=F^(-1)(1-q2)为最低录取分数
x2=norm.isf(q=q3, loc=166, scale=sigma) #x2=F^(-1)(1-q3)正式员工最低分数
print('x1<=scor is %s'%(x1<=scor))      #比较x1与scor
print('x2<=scor is %s'%(x2<=scor))      #比较x2与scor

程序代码逐句均有注释,读者不难理解。此处着重强调第7行、第9行和第10行调用残余函数的反函数isf,分别传递 q 1 q_1 q1 q 2 q_2 q2 q 3 q_3 q3计算 Φ − 1 ( 1 − q 1 ) \Phi^{-1}(1-q_1) Φ1(1q1) F − 1 ( 1 − q 2 ) F^{-1}(1-q_2) F1(1q2) F − 1 ( 1 − q 3 ) F^{-1}(1-q_3) F1(1q3)。运行程序2.14,输出:

x1<=scor is True
x2<=scor is True

这意味着该考生不但能被录取,还能成为正式工。
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:连续型随机变量分布(norm)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097643

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.