概率统计Python计算:离散型随机变量分布(bernoulli geom)

本文主要是介绍概率统计Python计算:离散型随机变量分布(bernoulli geom),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
Python的scipy.stats包中提供了各种随机变量的分布。每一种分布,其累积分布函数(分布函数)记为cdf。离散型变量分布的概率质量函数(分布律),记为pmf。除此之外,每个分布都有一个服从该分部变量发生器函数rvs,用来产生服从该分布的随机数。

1. bernoulli分布(0-1分布)

Python的scipy.stats包中,bernoulli类就是用来表示伯努利分布的。常用的三个函数说明见下表。

函数名参数功能
rvs(p, size)p:分布参数,size:产生的随机数个数,缺省值为1产生size个随机数
pmf(k, p)k:随机变量取值,p:与上同概率质量函数(分布律) P ( X = k ) P(X=k) P(X=k)
cdf(k, p)k:分布函数自变量,p:与上同累积概率函数(分布函数) F ( k ) F(k) F(k)
例1 下列代码利用bernoulli类对象的rvs函数模拟重复抛掷均匀分币试验。
from scipy.stats import bernoulli   #导入bernoulli
import numpy as np                  #导入numpy
x=bernoulli.rvs(p=1/2,size=500)     #产生500个服从p=1/2的0-1分布的随机数
hist, _=np.histogram(x, bins=2)     #统计取0、1的频数
hist/500                            #输出频率

其中的第3行调用bernoulli类对象的随机数发生函数rvs产生500个服从参数 p = 1 / 2 p=1/2 p=1/2的0-1分布(抛掷均匀分币0,1分别表示正面朝下和正面朝上)的随机数。第4行调用numpy的histogram函数统计500个数据中取0、1的频数。第5行输出频率。运行程序,输出

array([0.498, 0.502])

可见取0和1的频率分别为0.499和0.502,很好地模拟了抛掷均匀分币这一伯努利试验。

2. geom分布(几何分布)

scipy.stats包提供的geom类表示几何分布。常用的三个函数rvs、pmf和cdf的名称、参数和意义是完全一致的。这是因为0-1分布和几何分布均仅有一个表示一次试验成功概率的参数 p p p。由此可见,引入随机变量处理不同随机试验下的随机事件概率问题的形式是统一的。
例2 设灯泡在任意一天损坏的概率 p = 0.001 p=0.001 p=0.001,计算该灯泡的寿命至少为30天的概率。
:设灯泡的使用寿命(单位:天)为 X X X,则 X X X服从参数为 p = 0.001 p=0.001 p=0.001的几何分布。令 q = 1 − p = 0.999 q=1-p=0.999 q=1p=0.999,灯泡寿命至少为30天的概率
P ( X ≥ 30 ) = 1 − P ( X ≤ 29 ) = 1 − F ( 29 ) = 1 − ∑ k = 1 29 q 29 − k p = 1 − p 1 − q 29 1 − q = q 29 = 0.99 9 29 = 0.9714. P(X\geq30)=1-P(X\leq29)=1-F(29)\\ =1-\sum\limits_{k=1}^{29}q^{29-k}p=1-p\frac{1-q^{29}}{1-q}\\ =q^{29}=0.999^{29}=0.9714. P(X30)=1P(X29)=1F(29)=1k=129q29kp=1p1q1q29=q29=0.99929=0.9714.
下列代码验算本例中灯泡寿命至少为30天的概率。

from scipy.stats import geom        #导入geom
prob=1-geom.cdf(k=29,p=0.001)       #计算1-F(29)
print('P(X>=30)=1-F(29)=%.4f'%prob) #输出P(X>=30)

程序的第2行调用geom(第1行导入)的cdf函数,计算 1 − F ( 29 ) = 1 − ∑ k = 1 29 ( 1 − p ) k − 1 p 1-F(29)=1-\sum\limits_{k=1}^{29}(1-p)^{k-1}p 1F(29)=1k=129(1p)k1p。运行程序,输出

P(X>=30)=1-F(29)=0.9714

scipy.stats为每一种分布提供残存函数sf,该函数计算 P ( X > x ) = 1 − P ( X ≤ x ) = 1 − cdf ( x ) P(X>x)=1-P(X\leq x)=1-\text{cdf}(x) P(X>x)=1P(Xx)=1cdf(x)。例如,在上列程序中,将第2行代码换成
prob=geom.sf(k=29, p=0.01) \text{prob=geom.sf(k=29, p=0.01)} prob=geom.sf(k=29, p=0.01)
来计算服从参数为 p = 0.01 p=0.01 p=0.01的几何分布的随机变量 X X X的概率 P ( X ≥ 30 ) = P ( X > 29 ) P(X\geq30)=P(X>29) P(X30)=P(X>29)
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:离散型随机变量分布(bernoulli geom)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097641

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四