概率统计Python计算:假设检验应用——分布拟合检验

2024-08-22 22:48

本文主要是介绍概率统计Python计算:假设检验应用——分布拟合检验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
对来自总体 X X X的样本 X 1 , X 2 , ⋯ , X n X_1,X_2,\cdots,X_n X1,X2,,Xn,及给定的显著水平 α \alpha α检验假设 H 0 : X 的分布函数为 F ( x ) ( H 1 : X 的分布函数不是 F ( x ) ) . H_0:X\text{的分布函数为}F(x)(H_1:X\text{的分布函数不是}F(x)). H0:X的分布函数为F(x)(H1:X的分布函数不是F(x)).其中, F ( x ) F(x) F(x)是已知分布类型的分布函数(或分布律),含有 r r r个未知参数。为此,需要将 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)划分成 k ≤ n k\leq n kn个区间 A 1 , A 2 , ⋯ , A k A_1,A_2,\cdots,A_k A1,A2,,Ak,统计样本中落入每个区间 A i A_i Ai中的频数 f i f_i fi并按假设中的分布函数 F ( x ) F(x) F(x)(用未知参数的最大似然统计量值替代对应参数)计算概率 p i = P ( X ∈ A i ) p_i=P(X\in A_i) pi=P(XAi)。利用这些数据,调用scipy.stats包中的函数
chisquare(f_obs, f_exp, ddof=0) \text{chisquare(f\_obs, f\_exp, ddof=0)} chisquare(f_obs, f_exp, ddof=0)
即可算得检验假设 H 0 H_0 H0的p值。该函数的参数f_obs表示上述样本频数序列 { f 1 , f 2 , ⋯ , f k } \{f_1,f_2,\cdots,f_k\} {f1,f2,,fk},f_exp表示假设总体概率序列 { n p 1 , n p 2 , ⋯ , n p k } \{np_1,np_2,\cdots,np_k\} {np1,np2,,npk},ddof表示假设总体所含的未知参数个数 r r r,缺省值为0。该函数的返回值包括两个数据:表示检验统计量值 χ 2 = ∑ i = 1 k ( f i − n p i ) 2 n p i \chi^2=\sum\limits_{i=1}^k\frac{(f_i-np_i)^2}{np_i} χ2=i=1knpi(finpi)2的chisq,和表示检验p值 S ( χ 2 ) = 1 − F ( χ 2 ) S(\chi^2)=1-F(\chi^2) S(χ2)=1F(χ2)的p,其中 F ( x ) F(x) F(x) S ( x ) S(x) S(x)分别为 χ 2 ( k − 1 − r ) \chi^2(k-1-r) χ2(k1r)分布的分布函数和残存函数。
例1在一实验中,每隔一定时间观察一次由某种铀所放射的到达计数器上的 α \alpha α粒子数 X X X,共观察了100次,得结果如下表:

i i i01234567891011 ≥ \geq 12
f i f_i fi15161726119921210
A i A_i Ai A 0 A_0 A0 A 1 A_1 A1 A 2 A_2 A2 A 3 A_3 A3 A 4 A_4 A4 A 5 A_5 A5 A 6 A_6 A6 A 7 A_7 A7 A 8 A_8 A8 A 9 A_9 A9 A 10 A_{10} A10 A 11 A_{11} A11 A 12 A_{12} A12

其中, f i f_i fi是观察到有 i i i α \alpha α粒子的次数,从理论上考虑知 X X X应服从泊松分布 π ( λ ) \pi(\lambda) π(λ),问此判断是否符合实际(取 α = 0.05 \alpha=0.05 α=0.05)?
解: 下列代码完成本例中假设 H 0 : X H_0:X H0:X~ π ( λ ) \pi(\lambda) π(λ)的检验。

from scipy.stats import poisson, chisquare  #导入poisson, chisquare
import numpy as np                          #导入numpy
n=100                                       #样本容量
alpha=0.05                                  #显著水平
f=np.array([1,5,16,17,26,11,9,9,2,1,2,1,0]) #样本数据频数
k=f.size                                    #区间个数
r=1                                         #总体未知参数个数
x_bar=(np.arange(k)*f).sum()/n              #总体均值的最大似然估计值
p=[poisson.pmf(i,x_bar) for i in range(k-1)]#各区间内概率
p.append(1-sum(p))
p=np.array(p)
_, pv=chisquare(f, p*n, r)                  #检验p值
print('H0 is %s'%(pv>=alpha))

程序的第3~5行按题面设置各项数据。第6行计算区间个数k,第7行设置未知参数个数r,第8行计算假设中总体所含未知参数 λ \lambda λ的最大似然估计值x_bar。第9行计算概率 p i = λ i i ! e − λ , i = 0 , 1 , ⋯ , k − 2 p_i=\frac{\lambda^i}{i!}e^{-\lambda},i=0,1,\cdots,k-2 pi=i!λieλ,i=0,1,,k2,第10行计算 p k − 1 = 1 − ∑ i = 0 k − 2 p i p_{k-1}=1-\sum\limits_{i=0}^{k-2}p_i pk1=1i=0k2pi,第11行将算得的 p 0 , p 1 , ⋯ , p k − 1 p_0,p_1,\cdots,p_{k-1} p0,p1,,pk1构造成数组p。第12行调用函数chisquare,传递参数f(各区间内样本数据频数),n*p(序列 n p 0 , n p 1 , ⋯ , n p k − 1 np_0,np_1,\cdots,np_{k-1} np0,np1,,npk1)和r(未知参数个数),计算假设 H 0 : X H_0:X H0:X~ π ( λ ) \pi(\lambda) π(λ)的检验p值(由于此处我们并不需要检验统计量值,故用下划线将chisq屏蔽)。运行程序,输出

H0 is True.

表示接受假设 H 0 : X H_0:X H0:X~ π ( λ ) \pi(\lambda) π(λ)
写博不易,敬请支持:
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
代码诚可贵,原理价更高。若为AI学,读正版书好
返回《导引》

这篇关于概率统计Python计算:假设检验应用——分布拟合检验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097621

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一