spark 大型项目实战(四十六):troubleshooting之解决YARN队列资源不足导致的application直接失败

本文主要是介绍spark 大型项目实战(四十六):troubleshooting之解决YARN队列资源不足导致的application直接失败,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果说,你是基于yarn来提交spark。比如yarn-cluster或者yarn-client。你可以指定提交到某个hadoop队列上的。每个队列都是可以有自己的资源的。

跟大家说一个生产环境中的,给spark用的yarn资源队列的情况:500G内存,200个cpu core。

比如说,某个spark application,在spark-submit里面你自己配了,executor,80个;每个executor,4G内存;每个executor,2个cpu core。你的spark作业每次运行,大概要消耗掉320G内存,以及160个cpu core。

乍看起来,咱们的队列资源,是足够的,500G内存,280个cpu core。

首先,第一点,你的spark作业实际运行起来以后,耗费掉的资源量,可能是比你在spark-submit里面配置的,以及你预期的,是要大一些的。400G内存,190个cpu core。

那么这个时候,的确,咱们的队列资源还是有一些剩余的。但是问题是,如果你同时又提交了一个spark作业上去,一模一样的。那就可能会出问题。

第二个spark作业,又要申请320G内存+160个cpu core。结果,发现队列资源不足。。。。

此时,可能会出现两种情况:(备注,具体出现哪种情况,跟你的YARN、Hadoop的版本,你们公司的一些运维参数,以及配置、硬件、资源肯能都有关系)

1、YARN,发现资源不足时,你的spark作业,并没有hang在那里,等待资源的分配,而是直接打印一行fail的log,直接就fail掉了。
2、YARN,发现资源不足,你的spark作业,就hang在那里。一直等待之前的spark作业执行完,等待有资源分配给自己来执行。

采用如下方案:

1、在你的J2EE(我们这个项目里面,spark作业的运行,之前说过了,J2EE平台触发的,执行spark-submit脚本),限制,同时只能提交一个spark作业到yarn上去执行,确保一个spark作业的资源肯定是有的。

2、你应该采用一些简单的调度区分的方式,比如说,你有的spark作业可能是要长时间运行的,比如运行30分钟;有的spark作业,可能是短时间运行的,可能就运行2分钟。此时,都提交到一个队列上去,肯定不合适。很可能出现30分钟的作业卡住后面一大堆2分钟的作业。分队列,可以申请(跟你们的YARN、Hadoop运维的同学申请)。你自己给自己搞两个调度队列。每个队列的根据你要执行的作业的情况来设置。在你的J2EE程序里面,要判断,如果是长时间运行的作业,就干脆都提交到某一个固定的队列里面去把;如果是短时间运行的作业,就统一提交到另外一个队列里面去。这样,避免了长时间运行的作业,阻塞了短时间运行的作业。

3、你的队列里面,无论何时,只会有一个作业在里面运行。那么此时,就应该用我们之前讲过的性能调优的手段,去将每个队列能承载的最大的资源,分配给你的每一个spark作业,比如80个executor;6G的内存;3个cpu core。尽量让你的spark作业每一次运行,都达到最满的资源使用率,最快的速度,最好的性能;并行度,240个cpu core,720个task。

欢迎关注,更多福利

这里写图片描述

这篇关于spark 大型项目实战(四十六):troubleshooting之解决YARN队列资源不足导致的application直接失败的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1097531

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

hdu1180(广搜+优先队列)

此题要求最少到达目标点T的最短时间,所以我选择了广度优先搜索,并且要用到优先队列。 另外此题注意点较多,比如说可以在某个点停留,我wa了好多两次,就是因为忽略了这一点,然后参考了大神的思想,然后经过反复修改才AC的 这是我的代码 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

安卓链接正常显示,ios#符被转义%23导致链接访问404

原因分析: url中含有特殊字符 中文未编码 都有可能导致URL转换失败,所以需要对url编码处理  如下: guard let allowUrl = webUrl.addingPercentEncoding(withAllowedCharacters: .urlQueryAllowed) else {return} 后面发现当url中有#号时,会被误伤转义为%23,导致链接无法访问

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

poj 3190 优先队列+贪心

题意: 有n头牛,分别给他们挤奶的时间。 然后每头牛挤奶的时候都要在一个stall里面,并且每个stall每次只能占用一头牛。 问最少需要多少个stall,并输出每头牛所在的stall。 e.g 样例: INPUT: 51 102 43 65 84 7 OUTPUT: 412324 HINT: Explanation of the s

poj 2431 poj 3253 优先队列的运用

poj 2431: 题意: 一条路起点为0, 终点为l。 卡车初始时在0点,并且有p升油,假设油箱无限大。 给n个加油站,每个加油站距离终点 l 距离为 x[i],可以加的油量为fuel[i]。 问最少加几次油可以到达终点,若不能到达,输出-1。 解析: 《挑战程序设计竞赛》: “在卡车开往终点的途中,只有在加油站才可以加油。但是,如果认为“在到达加油站i时,就获得了一

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip