本文主要是介绍spark 大型项目实战(三十九): 算子调优之filter过后使用coalesce减少分区数量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
下面给出一种filter 的情况
默认情况下,经过了这种filter之后,RDD中的每个partition的数据量,可能都不太一样了。(原本每个partition的数据量可能是差不多的)
问题:
1、每个partition数据量变少了,但是在后面进行处理的时候,还是要跟partition数量一样数量的task,来进行处理;有点浪费task计算资源。
2、每个partition的数据量不一样,会导致后面的每个task处理每个partition的时候,每个task要处理的数据量就不同,这个时候很容易发生什么问题?数据倾斜。。。。
比如说,第二个partition的数据量才100;但是第三个partition的数据量是900;那么在后面的task处理逻辑一样的情况下,不同的task要处理的数据量可能差别达到了9倍,甚至10倍以上;同样也就导致了速度的差别在9倍,甚至10倍以上。
这样的话呢,就会导致有些task运行的速度很快;有些task运行的速度很慢。这,就是数据倾斜。
针对上述的两个问题,我们希望应该能够怎么样?
1、针对第一个问题,我们希望可以进行partition的压缩吧,因为数据量变少了,那么partition其实也完全可以对应的变少。比如原来是4个partition,现在完全可以变成2个partition。那么就只要用后面的2个task来处理即可。就不会造成task计算资源的浪费。(不必要,针对只有一点点数据的partition,还去启动一个task来计算)
2、针对第二个问题,其实解决方案跟第一个问题是一样的;也是去压缩partition,尽量让每个partition的数据量差不多。那么这样的话,后面的task分配到的partition的数据量也就差不多。不会造成有的task运行速度特别慢,有的task运行速度特别快。避免了数据倾斜的问题。
有了解决问题的思路之后,接下来,我们该怎么来做呢?实现?
coalesce算子
主要就是用于在filter操作之后,针对每个partition的数据量各不相同的情况,来压缩partition的数量。减少partition的数量,而且让每个partition的数据量都尽量均匀紧凑。
从而便于后面的task进行计算操作,在某种程度上,能够一定程度的提升性能。
欢迎关注,更多福利
这篇关于spark 大型项目实战(三十九): 算子调优之filter过后使用coalesce减少分区数量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!