在苹果设备上运行Stable Diffusion模型

2024-08-22 17:52

本文主要是介绍在苹果设备上运行Stable Diffusion模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在苹果设备上运行Stable Diffusion模型

本文介绍了在苹果设备(MAC、iPad、iPhone)上运行Stable Diffusion模型的方法,包括模型的下载、格式转换以及如何在Swift中调用模型进行推理。

模型类别

首先要下载模型,Stable Diffusion模型可以在huggingface或者Civitai下载到。但是在这两个网站上下载的模型可能会有三种格式。

CoreML格式

这种类别的模型较少,文件主要以.mlmodelc.mlmodel为主,其文件结构大致为:

├── TextEncoder.mlmodelc
├── TextEncoder2.mlmodelc
├── Unet.mlmodelc
├── VAEDecoder.mlmodelc
├── merges.txt
└── vocab.json

Diffusers格式

huggingface上下载的模型大多是这种类型,其文件结构大致为:

├── model_index.json
├── scheduler
│   └── scheduler_config.json
├── text_encoder
│   ├── config.json
│   └── pytorch_model.bin
├── tokenizer
│   ├── merges.txt
│   ├── special_tokens_map.json
│   ├── tokenizer_config.json
│   └── vocab.json
├── unet
│   ├── config.json
│   └── diffusion_pytorch_model.bin
└── vae├── config.json└── diffusion_pytorch_model.bin

safetensors格式

Civitai网站下载的大多是这种格式,就一个文件,非常方便。

模型转换

接下来,需要把下载下来的模型都转成CoreML格式,如果你在第一步下载的模型已经是CoreML格式,那么这一步就可以跳过。

Diffusers格式转CoreML格式

首先下载该仓库代码:ml-stable-diffusion。查看System Requirements检查自己的设备是否支持。然后安装依赖:

pip install -r requirements.txt

找到torch2coreml.py文件,执行以下命令:

python torch2coreml.py \
--bundle-resources-for-swift-cli \
--xl-version \
--convert-unet \
--convert-text-encoder \
--convert-vae-decoder \
--attention-implementation ORIGINAL \
--model-version /your/model/path \
-o /your/model/output/path

注意有个参数--xl-version,如果模型是sdxl类型的,就加上,否则把这行删除。另外如果你的模型支持图生图,你可以加上--convert-vae-encoder参数。

运行完该命令,应该在你指定的目录生成了文件,在Resources目录下的文件就是转换好的CoreML格式。

safetensors格式转Diffusers格式

首先下载该仓库代码:Diffusers。然后安装依赖:

pip install --upgrade diffusers

找到convert_original_stable_diffusion_to_diffusers.py文件并执行以下命令:

python convert_original_stable_diffusion_to_diffusers.py \
--checkpoint_path /your/model/path \
--dump_path /your/model/output/path \
--from_safetensors \
--half \
--device mps

这里--half表示转换时精度为fp16--device mps表示模型使用mps(GPU)进行推理。

运行完该命令,会生成Diffusers格式的模型,再利用Diffusers格式转CoreML格式的步骤,将模型转换为CoreML格式。

Swift调用Stable Diffusion模型

使用Huggingface提供的swift-coreml-diffusers库。

import StableDiffusion
import CoreML// 初始化CoreML配置
let config = MLModelConfiguration()
// 运行在GPU上(MAC限定)
config.computeUnits = MLComputeUnits.cpuAndGPU
// 初始化pipeline
var pipeline = try StableDiffusionPipeline(resourcesAt: modelDirectory,controlNet: [],configuration: config,reduceMemory: diffusersConfig.reduceMemory)
let pipeline.loadResources()
// 初始化图片推理配置
var pipelineConfig = StableDiffusionPipeline.Configuration(prompt: prompt)
pipelineConfig.stepCount = stepCount
pipelineConfig.guidanceScale = cfgScale
pipelineConfig.schedulerType = scheduler
// 开始图片推理
let images = try pipeline.generateImages(configuration: pipelineConfig,progressHandler: { progress in
})

我的AquariusAI项目提供了示例代码。

最后

那到底什么是CoreML呢?

Core ML 是Apple Silicon芯片产品(包括macOS、iOS、watchOS 和 tvOS)中使用的机器学习框架,用于执行快速预测或推理,在边缘轻松集成预训练的机器学习模型,从而可以对设备上的实时图像或视频进行实时预测。

Core ML 通过利用 CPU、GPU 和 神经网络引擎 ,同时最大程度地减小内存占用空间和功耗,来优化设备端性能。 由于模型严格地在用户设备上,因此无需任何网络连接,这有助于保护用户数据的私密性和 App 的响应速度。

简而言之,如果你的模型运行在Silicon芯片的苹果设备上,利用Core ML可以获得更快的性能和更低的内存及能耗。


本文首发于:https://babyno.top/posts/2024/06/run-the-stable-diffusion-model-on-apple-devices/

欢迎关注我的公众号“机器人小不”,原创技术文章第一时间推送。

这篇关于在苹果设备上运行Stable Diffusion模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096981

相关文章

Linux使用nohup命令在后台运行脚本

《Linux使用nohup命令在后台运行脚本》在Linux或类Unix系统中,后台运行脚本是一项非常实用的技能,尤其适用于需要长时间运行的任务或服务,本文我们来看看如何使用nohup命令在后台... 目录nohup 命令简介基本用法输出重定向& 符号的作用后台进程的特点注意事项实际应用场景长时间运行的任务服

如何在一台服务器上使用docker运行kafka集群

《如何在一台服务器上使用docker运行kafka集群》文章详细介绍了如何在一台服务器上使用Docker运行Kafka集群,包括拉取镜像、创建网络、启动Kafka容器、检查运行状态、编写启动和关闭脚本... 目录1.拉取镜像2.创建集群之间通信的网络3.将zookeeper加入到网络中4.启动kafka集群

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

PostgreSQL如何用psql运行SQL文件

《PostgreSQL如何用psql运行SQL文件》文章介绍了两种运行预写好的SQL文件的方式:首先连接数据库后执行,或者直接通过psql命令执行,需要注意的是,文件路径在Linux系统中应使用斜杠/... 目录PostgreSQ编程L用psql运行SQL文件方式一方式二总结PostgreSQL用psql运

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

如何用Docker运行Django项目

本章教程,介绍如何用Docker创建一个Django,并运行能够访问。 一、拉取镜像 这里我们使用python3.11版本的docker镜像 docker pull python:3.11 二、运行容器 这里我们将容器内部的8080端口,映射到宿主机的80端口上。 docker run -itd --name python311 -p

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}