一文彻底搞懂Transformer - 总体架构,零基础入门到精通,收藏这一篇就够了

本文主要是介绍一文彻底搞懂Transformer - 总体架构,零基础入门到精通,收藏这一篇就够了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Transformer

一、RNN编码器-解码器架构****

********序列到序列模型(Seq2Seq)Seq2Seq模型的目标是将一个输入序列转换成另一个输出序列,这在多种应用中都具有广泛的实用价值,例如语言建模、机器翻译、对话生成等。

Seq2Seq

**RNN编码器-解码器架构:**Transformer出来之前,主流的序列转换模型都基于复杂的循环神经网络(RNN),包含编码器和解码器两部分。当时表现最好的模型还通过注意力机制将编码器和解码器连接起来。

Transformer vs RNN

在Seq2Seq框架中,RNN的作用主要体现在两个方面:编码和解码。

****编码器:****RNN接收输入序列,并逐个处理序列中的元素(如单词、字符或时间步),同时更新其内部状态以捕获序列中的依赖关系和上下文信息。这种内部状态,通常被称为“隐藏状态”,能够存储并传递关于输入序列的重要信息。

RNN编码器-解码器架构

解码器:RNN使用编码阶段生成的最终隐藏状态(或整个隐藏状态序列)作为初始条件,生成输出序列。在每一步中,解码器RNN都会根据当前状态、已生成的输出和可能的下一个元素候选来预测下一个元素。

因此,循环神经网络(RNN)、特别是长短时记忆网络(LSTM)和门控循环单元网络(GRU),已经在序列建模和转换问题中牢固确立了其作为最先进方法的地位。

RNN LSTM GRU

神经网络算法 - 一文搞懂RNN(循环神经网络)****


神经网络算法 - 一文搞懂LSTM(长短期记忆网络)

同时,RNN存在一个显著的缺陷:处理长序列时,会存在信息丢失。

编码器在转化序列**x1, x2, x3, x4**为单个向量**c**时,信息会丢失。因为所有信息被压缩到这一个向量中,处理长序列时,信息必然会丢失。

RNN编码器-解码器架构

二、Transformer总体架构_****_

**Transformer起源:******Google Brain 翻译团队通过论文《Attention is all you need》提出了一种全新的简单网络架构——****Transformer,它完全基于注意力机制,摒弃了循环和卷积操作。

注意力机制是全部所需

************注意力机制:************一种允许模型在处理信息时专注于关键部分,忽略不相关信息,从而提高处理效率和准确性的机制。它模仿了人类视觉处理信息时选择性关注的特点。

注意力机制

当人类的视觉机制识别一个场景时,通常不会全面扫描整个场景,而是根据兴趣或需求集中关注特定的部分,如在这张图中,我们首先会注意到动物的脸部,正如注意力图所示,颜色更深的区域通常是我们最先注意到的部分,从而初步判断这可能是一只狼。

注意力机制

Transformer动画讲解 - 注意力机制

**注意力计算Q、K、V:**注意力机制通过查询(Q)匹配键(K)计算注意力分数(向量点乘并调整),将分数转换为权重后加权值(V)矩阵,得到最终注意力向量。

注意力分数是量化注意力机制中信息被关注的程度,反映了信息在注意力机制中的重要性。

Q、K、V计算注意力分数

Transformer动画讲解 - 注意力计算Q、K、V

Transformer本质:****************Transformer是一种基于自注意力机制的深度学习模型,为了解决RNN无法处理长序列依赖问题****而设计的。****

Transformer vs RNN

********Transformer总体架构:********Transformer也遵循编码器-解码器总体架构,使用堆叠的自注意力机制和逐位置的全连接层,分别用于编码器和解码器,如图中的左半部分和右半部分所示。

Transformer的架构

  • **Encoder编码器:**Transformer的编码器由6个相同的层组成,每个层包括两个子层:一个多头自注意力层和一个逐位置的前馈神经网络。在每个子层之后,都会使用残差连接和层归一化操作,这些操作统称为Add&Normalize。这样的结构帮助编码器捕获输入序列中所有位置的依赖关系。

Encoder(编码器)架构

  • **Decoder解码器:**Transformer的解码器由6个相同的层组成,每层包含三个子层:**掩蔽自注意力层、Encoder-Decoder注意力层和逐位置的前馈神经网络。**每个子层后都有残差连接和层归一化操作,简称Add&Normalize。这样的结构确保解码器在生成序列时,能够考虑到之前的输出,并避免未来信息的影响。

Decoder(解码器)架构

神经网络算法 - 一文搞懂FFNN(前馈神经网络)

**************Transformer核心组件:******Transformer模型包含输入嵌入、位置编码、多头注意力、残差连接和层归一化、带掩码的多头注意力以及前馈网络等组件。

Transformer的核心组件


  • 输入嵌入:将输入的文本转换为向量,便于模型处理。

  • 位置编码:给输入向量添加位置信息,因为Transformer并行处理数据而不依赖顺序。

  • 多头注意力:让模型同时关注输入序列的不同部分,捕获复杂的依赖关系。

  • 残差连接与层归一化:通过添加跨层连接和标准化输出,帮助模型更好地训练,防止梯度问题。

  • 带掩码的多头注意力:在生成文本时,确保模型只依赖已知的信息,而不是未来的内容。

  • 前馈网络:对输入进行非线性变换,提取更高级别的特征。

Transformer的核心组件

****************Transformer数据流转:**********可以概括为四个阶段,Embedding(嵌入)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(从模型表示到最终输出)。
**

Embedding -> Attention -> MLPs -> Unembedding


Transformer动画讲解 - 数据处理的四个阶段

**

************Transformer注意力层:************在Transformer架构中,有3种不同的注意力层(Self Attention自注意力、Cross Attention 交叉注意力、Causal Attention因果注意力)


  • ****编码器中的自注意力层(Self Attention layer):****编码器输入序列通过Multi-Head Self Attention(多头自注意力)计算注意力权重。

  • ****解码器中的交叉注意力层(Cross Attention layer):****编码器-解码器两个序列通过Multi-Head Cross Attention(多头交叉注意力)进行注意力转移。

  • ****解码器中的因果自注意力层(Causal Attention layer):****解码器的单个序列通过Multi-Head Causal Self Attention(多头因果自注意力)进行注意力计算

Transformer注意力层

**

神经网络算法 - 一文搞懂Transformer中的三种注意力机制

本文转自 https://mp.weixin.qq.com/s/DenAOo2flPF3S9NSB4qe-Q,如有侵权,请联系删除。

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

这篇关于一文彻底搞懂Transformer - 总体架构,零基础入门到精通,收藏这一篇就够了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1096072

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

一文带你搞懂Nginx中的配置文件

《一文带你搞懂Nginx中的配置文件》Nginx(发音为“engine-x”)是一款高性能的Web服务器、反向代理服务器和负载均衡器,广泛应用于全球各类网站和应用中,下面就跟随小编一起来了解下如何... 目录摘要一、Nginx 配置文件结构概述二、全局配置(Global Configuration)1. w

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

mybatis的整体架构

mybatis的整体架构分为三层: 1.基础支持层 该层包括:数据源模块、事务管理模块、缓存模块、Binding模块、反射模块、类型转换模块、日志模块、资源加载模块、解析器模块 2.核心处理层 该层包括:配置解析、参数映射、SQL解析、SQL执行、结果集映射、插件 3.接口层 该层包括:SqlSession 基础支持层 该层保护mybatis的基础模块,它们为核心处理层提供了良好的支撑。

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题: